
DESIGN PATTERN DECAY – A STUDY OF DESIGN PATTERN GRIME AND ITS

IMPACT ON QUALITY AND TECHNICAL DEBT

by

Isaac Daniel Griffith

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

December 2021

©COPYRIGHT

by

Isaac Daniel Griffith

2021

All Rights Reserved

ii

DEDICATION

I dedicate this dissertation to the memory of my uncle Lynn Griffith, a man whose
outlook and dedication towards bettering himself consistently reminds me that we should all
strive towards this goal.

iii

ACKNOWLEDGEMENTS

I want to acknowledge my dissertation chair Dr. Izurieta who stood by me and this

work for the very long time it took to complete. Similarly, I would like to acknowledge my

dissertation committee members: Dr. Poole, Dr. Wittie, and Dr. Borkowski, who have

also continued serving and providing guidance over this long journey. I would also like to

acknowledge the support of my family, especially my wife Lora, who has never doubted

that I would complete this work. Finally, I would like to thank my students at Idaho State

University. Without their support, I would not have completed this work.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 Research Design .. 3
1.1.1 Problem Statement ... 3
1.1.2 Design Science Framework... 4
1.1.3 Problem Decomposition .. 5
1.1.4 Empirical Research Methodology ... 8

1.2 Overview of the Dissertation .. 9

2. BACKGROUND AND RELATED WORK... 11

2.1 Design Pattern Evolution... 11
2.2 Software Aging and Decay ... 12
2.3 Technical Debt .. 12

2.3.1 Metaphor, Definition, and Properties ... 13
2.3.2 Technical Debt Management ... 14
2.3.3 Impact and Consequences ... 17
2.3.4 Design Debt ... 18

2.3.4.1 Code Smells.. 18
2.3.4.2 Design Pattern Disharmonies ... 18

2.3.5 Design Debt Identification... 21
2.3.6 Design Disharmonies and Quality .. 24
2.3.7 Measurement.. 27

2.4 Software Quality ... 28
2.4.1 SQALE .. 29
2.4.2 Quamoco ... 30
2.4.3 SIG Maintainability Model .. 31
2.4.4 High Level Differences between Quality Models 31

2.5 Research Gaps .. 32
2.6 Research Contributions.. 33

3. THE ARC EXPERIMENTATION FRAMEWORK... 35

3.1 Introduction.. 35
3.2 Arc Architecture ... 36
3.3 Workflows ... 36

3.3.1 Example Workflow.. 39
3.3.2 Data Model .. 41

3.3.2.1 System Data. .. 41
3.3.2.2 Pattern Data. ... 41

v

TABLE OF CONTENTS – CONTINUED

3.3.2.3 Static Analysis Data ... 44
3.3.2.4 Project Artifact Data. ... 45

3.4 Integration of Tools ... 47
3.4.1 Java™ Artifact Identification.. 48
3.4.2 Java Component Analysis ... 49
3.4.3 GitHub Search.. 50
3.4.4 Git Execution... 51
3.4.5 Static Analysis Tools .. 52

3.4.5.1 SpotBugs.. 53
3.4.5.2 PMD.. 54
3.4.5.3 Pattern4 Design Pattern Detector .. 56
3.4.5.4 Metrics Analysis Tool.. 56

3.4.6 Build Tools .. 56
3.4.6.1 Maven .. 56
3.4.6.2 Gradle.. 58

3.5 Conclusion .. 59

4. COLLECTING DESIGN PATTERN DATA ... 60

4.1 Introduction.. 60
4.2 Design Pattern Detection... 61

4.2.1 Data Cleansing ... 64
4.2.2 Pattern Chains ... 65
4.2.3 Integration into Arc .. 69
4.2.4 Summary ... 70

4.3 Design Pattern Generation... 70
4.3.1 Design Pattern Generation Architecture and Method 72
4.3.2 Pattern Generation Cue Language ... 75
4.3.3 Integration into the Arc Framework ... 78

4.4 Conclusion .. 79

5. METRICS, QUALITY AND TECHNICAL DEBT ... 80

5.1 Introduction.. 80
5.2 Metrics Analysis.. 81

5.2.1 Metrics Model .. 81
5.2.2 Implemented Metrics .. 84
5.2.3 Arc Framework Integration ... 84

5.3 Quality Measurement .. 85
5.3.1 Quamoco Quality Modeling... 86

vi

TABLE OF CONTENTS – CONTINUED

5.3.1.1 Quamoco Architecture... 86
5.3.1.2 Quamoco Processing ... 88
5.3.1.3 Collecting Findings ... 89
5.3.1.4 Evaluation of Quality .. 89

5.3.2 SIG Maintainability Model .. 91
5.3.2.1 SIG Maintainability Model Quality Measurement.................... 92
5.3.2.2 Rating Raw Values.. 95
5.3.2.3 SIG Maintainability Model Calibration................................... 99

5.3.3 Selecting a Quality Model ..100
5.4 Technical Debt Measurement ..101

5.4.1 Calculating Technical Debt ..101
5.4.1.1 CAST TD Principal Estimation ..102
5.4.1.2 Nugroho et al.’s Method to Estimate TD

Principal and Interest...103
5.4.1.3 Selecting a Method ..106

5.4.2 Technical Debt Measurement Architecture ..107
5.5 Conclusion ...108

6. SOFTWARE INJECTION ...110

6.1 Introduction...110
6.2 Software Injection Architecture ...111

6.2.1 Software Injection Metamodel ..111
6.2.2 The Injection Process...113
6.2.3 Integration into the Arc Framework ..114

6.3 Design Pattern Grime Injection ...117
6.3.1 Modular Grime..117
6.3.2 Class Grime ..119
6.3.3 Organizational Grime...122

6.3.3.1 Package Organizational Grime ..122
6.3.3.2 Modular Organizational Grime ...124

6.4 Applications...127
6.4.1 Application to Experimentation..127
6.4.2 Application to Benchmarking ...127
6.4.3 Application to Design Patterns ...128

6.5 Conclusion ...128

7. DESIGN PATTERN GRIME DETECTION..129

7.1 Introduction...129

vii

TABLE OF CONTENTS – CONTINUED

7.2 Detection Framework..130
7.2.1 Modular Grime Detection...130
7.2.2 Class Grime Detection ...133
7.2.3 Organizational Grime Detection ...137

7.3 Arc Framework Integration ...141
7.4 Conclusion ...142

8. PUTTING IT ALL TOGETHER: THE METHOD..143

8.1 Aspects to Study..144
8.2 The Process ...147

8.2.1 In Vitro Experimentation...148
8.2.2 Bridge: In Vitro to In Vivo ..155
8.2.3 In Vivo Field Studies ...157
8.2.4 Bridge: In Vivo Results Informing In Vitro Experiments161

8.3 Future Implications and Conclusions ...163

9. DESIGN PATTERN GRIME TAXONOMY ..165

9.1 Introduction...165
9.2 Taxonomy Definition Process ..166
9.3 Formal Framework ...167

9.3.1 Structure...168
9.3.2 Relationships...170

9.4 Modular Grime ..174
9.4.1 Class Coupling ..174
9.4.2 Modular Grime Examples ..176
9.4.3 Modular Grime Categories ...178

9.5 Class Grime ...179
9.5.1 Class Cohesion ..180
9.5.2 Class Grime Example...182
9.5.3 Class Grime Categories ..183

9.6 Organizational Grime ...185
9.6.1 Package Cohesion ..186
9.6.2 Package Coupling ..187
9.6.3 Organizational Grime Example...189
9.6.4 Organizational Grime Categories ..189

9.7 Conclusion ...192

viii

TABLE OF CONTENTS – CONTINUED

10. EXPERIMENTATION: THE EFFECTS OF GRIME ON MAINTAIN-
ABILITY AND TECHNICAL DEBT..193

10.1 Introduction...193
10.2 Methods ..194

10.2.1 Refined Research Questions and Metrics ...195
10.2.2 Experimental Design..199
10.2.3 Data Collection ...199
10.2.4 Analysis Procedures...201

10.2.4.1 Size Analysis ...203
10.2.4.2 ANOVA/Permutation F-test ...203
10.2.4.3 Interaction Effect ...204
10.2.4.4 Main Effects, Multiple Comparisons and Pre-

planned Contrasts ..204
10.2.5 Evaluation of Validity ..205

10.3 Execution ..206
10.4 Analysis Results ...207

10.4.1 Size Analysis ...207
10.4.2 Analyzability...208

10.4.2.1 Descriptive Statistics ..208
10.4.2.2 Hypothesis Testing...211

10.4.3 Testability...220
10.4.3.1 Descriptive Statistics ..220
10.4.3.2 Data Set Reduction..224
10.4.3.3 Hypothesis Testing...224

10.4.4 Modifiability..230
10.4.4.1 Descriptive Statistics ..230
10.4.4.2 Hypothesis Testing...234

10.4.5 Modularity ..242
10.4.5.1 Descriptive Statistics ..242
10.4.5.2 Hypothesis Testing...245

10.4.6 Reusability ..252
10.4.6.1 Descriptive Statistics ..252
10.4.6.2 Hypothesis Testing...254

10.4.7 Technical Debt Principal ..254
10.4.7.1 Descriptive Statistics ..254
10.4.7.2 Hypothesis Testing...258

10.4.8 Technical Debt Interest ..265
10.4.8.1 Descriptive Statistics ..265
10.4.8.2 Hypothesis Testing...268

ix

TABLE OF CONTENTS – CONTINUED

10.5 Interpretation...275
10.5.1 Evaluation of Results and Implications..275

10.5.1.1 RQ2.1 How does each type of Grime affect
design pattern quality for each of the selected
Maintainability sub-characteristics?.......................................275

10.5.1.2 RQ2.2 What level of injection severity affects
a change in design pattern quality for each of
the Maintainability sub-characteristics?277

10.5.1.3 RQ2.3 What is the difference between the
effects of the grime types and their subtypes
on maintainability sub-characteristics?277

10.5.1.4 RQ2 Summary ...278
10.5.1.5 RQ3.1 How does each type of grime affect

design pattern technical debt principal and
interest? ..279

10.5.1.6 RQ3.2 What level of grime severity affects
a change in design pattern technical debt
principal and interest?..279

10.5.1.7 RQ3.3 What is the difference between the
effects of the grime types and their subtypes
on technical debt principal and interest?................................280

10.5.1.8 RQ3 Summary ...280
10.5.2 Limitations of the Study ..281

10.5.2.1 Conclusion Validity ..281
10.5.2.2 Internal Validity...281
10.5.2.3 Construct Validity..281
10.5.2.4 Content Validity ..282
10.5.2.5 External Validity ...282

10.5.3 Inferences..283
10.6 Conclusion and Future Work...283

11. VERIFICATION STUDY...285

11.1 Introduction...285
11.2 Design ...287
11.3 Selection ..289
11.4 Data Collection ..290

11.4.1 Data Collection Process ...290
11.4.2 Data to be Collected..293

11.5 Analysis Procedure...293

x

TABLE OF CONTENTS – CONTINUED

11.6 Results and Discussion ...297
11.6.1 Study Unit Extraction ...297
11.6.2 Verification Study..298
11.6.3 Discussion ...302

11.7 Threats to Validity ...303
11.8 Conclusion ...305

12. CONCLUSIONS AND FUTURE WORK ..307

12.1 Relationship to Existing Evidence ...308
12.2 Impact and Limitations ..310
12.3 Future Work ..311

REFERENCES CITED...314

APPENDIX: PGCL Definitions ...332

A.1 (Object) Adapter ...333
A.2 Bridge ...333
A.3 Chain of Responsibility...334
A.4 Command..335
A.5 Composite ...336
A.6 Decorator ..337
A.7 Factory Method ...338
A.8 Flyweight...339
A.9 Observer ..340
A.10 Prototype ..341
A.11 Proxy ..342
A.12 Singleton ...342
A.13 State ...343
A.14 Strategy...344
A.15 Template Method ...345
A.16 Visitor ...346

xi

LIST OF TABLES

Table Page

5.1 Calculation of quality characteristics in the SIG Maintainabil-
ity Model. .. 96

5.2 SIG Maintainability Model Property and Measure rating types........................ 97

5.3 Example rating table for Volume ... 97

5.4 LOC per Unit to Risk Category mapping. .. 98

5.5 Example system characteristics.. 99

5.6 Example risk profile rating table for Unit Size .. 99

5.7 Calibration distribution..100

5.8 Values for models of TDE as proposed by Curtis, Sippidi, and
Szynkarski [60,103]. ...102

5.9 Rework Fraction table [203]. ...105

6.1 Value table for the Modular Grime Injection Strategy param-
eters. T indicates true, F indicates false, and – indicates
N/A..118

6.2 Value table for the Class Grime Injection Strategy parameters.
T indicates true and F indicates false. ...121

6.3 Value table for the Package Organizational Grime Injection
Strategy parameters. T indicates true and F indicates false.123

6.4 Value table for the Modular Organizational Grime Injection
Strategy parameters. T indicates true and F indicates false.126

10.1 Example data collection table for grime and quality experiment......................200

10.2 Size analysis results. ..207

10.3 Summary of Analyzability data. ...208

10.4 Summary of Testability data. ...220

10.5 Summary of Modifiability data. ..230

10.6 Summary of Modularity data..242

10.7 Summary of Reusability data. ..252

xii

LIST OF TABLES – CONTINUED

Table Page

10.8 Summary of TD Principal data...255

10.9 Summary of TD Interest data...265

11.1 Software systems and their version ranges selected for evalu-
ation from the Qualitas Corpus...289

11.2 An example data table (note: this represents a complete table,
that was separated into two for space concerns, thus the Unit
column is the same for both versions). ..292

11.3 Example confusion matrix with margin values for use in
calculating Cohen’s Kappa for Analyzability. ...296

11.4 Cohen’s κ agreement level mappings. ..298

11.5 Selected projects and the number of versions, patterns identi-
fied, pattern chains identified, and the number of study units
identified in each project. ...299

11.6 Study units extracted...300

11.7 Verification study results. ...301

11.8 Analysis results ...302

xiii

LIST OF FIGURES

Figure Page

3.1 Illustration of the overall Arc conceptual framework.. 37

3.2 Workflow model.. 38

3.3 Example workflow for a Java Project. .. 40

3.4 System data section of the data model. .. 42

3.5 Pattern section of the data model. ... 43

3.6 Static analysis data section of the data model... 44

3.7 Project artifact data section of the data model. .. 46

3.8 Integration of Java Artifact Identification with Arc. .. 48

3.9 Integration of the Java Component Analysis with Arc. 49

3.10 Integration of Github Search with Arc. .. 51

3.11 Integration of Git with Arc. .. 52

3.12 Integration of SpotBugs with Arc. ... 54

3.13 Integration of PMD with Arc. ... 55

3.14 Integration of Apache Maven with Arc. .. 57

3.15 Integration of Gradle with Arc. ... 58

4.1 Example matrix breakdown of the Abstract Factory Pattern.
The circles (nodes) in each graph represent class roles, and
links represent the presence of that type of connection (Asso-
ciation, Generalization, Abstraction, Method Invocation). 63

4.2 Integrating Pattern4 and Design Pattern Data cleansing into Arc. 71

4.3 Pattern Generation class diagram. ... 72

4.4 Pattern Generation Cue Language meta-model. .. 76

4.5 Example PGCL script for an lazy initialized singleton instance. 77

4.6 Integration of the Pattern Generator with the Arc Framework. 78

5.1 The axes of metrics division with examples shown. ... 82

xiv

LIST OF FIGURES – CONTINUED

Figure Page

5.2 Metrics measurement system model. .. 83

5.3 Integration of the metrics analysis system with the Arc Framework.................. 85

5.4 Integration of the Quamoco quality measurement approach
with the Arc Framework. .. 87

5.5 Representation of the processing graph. ... 89

5.6 Integration of the SIG Maintainability Model quality measure-
ment approach with the Arc Framework... 91

5.7 SIG Maintainability Model [268]. ... 92

5.8 Integration of technical debt measurement system with the
Arc Framework..108

6.1 Software Injection meta-model..112

6.2 High-level overview of the software injection process.113

6.3 Software Injection Injectors. ...115

6.4 Source Injector integration with the Arc Framework.116

7.1 Grime Detection integration with the Arc Framework.141

8.1 Software engineering phenomena aspects of study. ...144

8.2 The methodological process for empirical research concerning
software artifacts. ..148

8.3 Phase 1 overview. ..150

8.4 Phase 1 Meta-Studies details. ...151

8.5 Phase 1 Experiencial Studies details..151

8.6 Phase 2 details. ...153

8.7 Phase 3 details. ...156

8.8 Phase 4 details. ...158

8.9 Phase 5 details. ...160

8.10 Phase 6 details. ...162

xv

LIST OF FIGURES – CONTINUED

Figure Page

9.1 Example Package Graph. ...167

9.2 Example Pattern Graph. ..169

9.3 Example Composite Graph...171

9.4 The extended Modular Grime taxonomy..175

9.5 An example of the PIG type of Modular Grime. ..177

9.6 An example of the PEEG type of Modular Grime. ...177

9.7 The extended Class Grime taxonomy. ...180

9.8 An example of the IESG type of Class Grime. ...181

9.9 Example of DISG. ...182

9.10 Organizational Grime taxonomy. ..186

9.11 Example of PECG. ..189

10.1 Grime effect on Quality data collection process. ...200

10.2 Data collection execution process. ...206

10.3 Histogram of the change in Analyzability...209

10.4 Table plot of Analyzability data. ..210

10.5 Scatterplot of the Change in Analyzability and Pattern Type.211

10.6 Analyzability diagnostic plots. ..212

10.7 Analyzability Class Grime interactions part 1. ...214

10.8 Analyzability Class Grime interactions part 2. ...215

10.9 Analyzability Modular Grime interactions. ..215

10.10 Analyzability Modular Organizational Grime interactions part
1...216

10.11 Analyzability Modular Organizational Grime interactions part
2...216

10.12 Analyzability Package Organizational Grime interactions.217

xvi

LIST OF FIGURES – CONTINUED

Figure Page

10.13 Analyzability interactions for the PERG subtype. ..217

10.14 Analyzability interactions for the PIRG subtype. ...218

10.15 Histogram of the change in Testability. ...221

10.16 Table plot of Testability data. ..222

10.17 Scatterplot of the Change in Testability and Pattern Type.223

10.18 Testability diagnostic plots. ..225

10.19 Testability interaction plots for class grime injection.226

10.20 Testability interaction plots for modular grime injection.................................226

10.21 Testability interaction plots for modular organizational grime injection.227

10.22 Testability interaction plots for MTEUG subtype. ...227

10.23 Testability interaction plots for package organizational grime injection.228

10.24 Testability interaction plots for PERG subtype..228

10.25 Histogram of the change in Modifiability. ..231

10.26 Table plot of Modifiability data. ...232

10.27 Scatterplot of the Change in Modifiability and Pattern Type..........................233

10.28 Modifiability diagnostic plots..234

10.29 Modifiability interaction plots for class grime injection.236

10.30 Modifiability interaction plots for DISG. ...236

10.31 Modifiability interaction plots for modular grime injection..............................237

10.32 Modifiability interaction plots for PEAG and TEAG......................................237

10.33 Modifiability interaction plots for modular organizational
grime injection...238

10.34 Modifiability interaction plots for MTEUG..238

10.35 Modifiability interaction plots for PECG and PICG.239

10.36 Modifiability interaction plots for PERG. ..239

xvii

LIST OF FIGURES – CONTINUED

Figure Page

10.37 Modifiability interaction plots for PIRG. ...240

10.38 Histogram of the change in Modifiability. ..242

10.39 Table plot of Modularity data...243

10.40 Scatterplot of the Change in Modifiability and Pattern Type..........................244

10.41 Modularity diagnostic plots. ...246

10.42 Modularity interaction plots for class grime injection.247

10.43 Modularity interaction plots for modular grime injection.248

10.44 Modularity interaction plots for PEAG and TEAG.248

10.45 Modularity interaction plots for modular organizational grime injection.249

10.46 Modularity interaction plots for MTEUG. ...249

10.47 Modularity interaction plots for package organizational grime injection.250

10.48 Table plot of Reusability data...252

10.49 Scatterplot of the Change in Reusability and Pattern Type.253

10.50 Histogram of the change in TD Principal. ...255

10.51 Table plot of TD Principal data..256

10.52 Scatterplot matrix of the Change in TD Principal and Pattern Type.257

10.53 TD Principal diagnostic plots. ..259

10.54 TD Principal interaction plots for class grime injection.260

10.55 TD Principal interaction plots for modular grime injection.260

10.56 TD Principal interaction plots for modular organizational
grime injection...261

10.57 TD Principal interaction plots for MTEUG. ..261

10.58 TD Principal interaction plots for PECG and PICG.262

10.59 TD Principal interaction plots for PERG and PIRG.262

10.60 Histogram of the change in TD Interest. ...265

xviii

LIST OF FIGURES – CONTINUED

Figure Page

10.61 Table plot of TD Interest data..266

10.62 Scatterplot of the Change in TD Interest and Pattern Type.267

10.63 TD Interest diagnostic plots. ..269

10.64 TD Interest interaction plots for class grime injection.270

10.65 TD Interest interaction plots for modular grime injection.271

10.66 TD Interest interaction plots for modular organizational grime injection.271

10.67 TD Interest interaction plot for MTEUG...272

10.68 TD Interest interaction plots for PECG and PICG.272

10.69 TD Interest interaction plots for PERG and PIRG...273

11.1 Data collection process...291

12.1 Dimensions of future work. ...311

xix

LIST OF ALGORITHMS

Algorithm Page

4.1 Similarity Scoring Algorithm [263] ... 62

4.2 Pattern Instance Coalescing Algorithm .. 65

4.3 Pattern Instance Chaining Algorithm... 68

4.4 Pattern Generation Algorithm ... 74

6.1 Modular Grime Injection Strategy ..117

6.2 Class Grime Injection Strategy ...120

6.3 Package Organizational Grime Injection Strategy...122

6.4 Modular Organizational Grime Injection Strategy..125

7.1 Modular Grime Detection Strategy ...131

7.2 Class Grime Detection Strategy ..133

7.3 Class Grime Detection Strategy - Pair Types...135

7.4 Class Grime Detection Strategy - Singular Types...136

7.5 Organizational Grime Detection Strategy ..137

7.6 Organizational Grime Detection Strategy - Package Types138

7.7 Organizational Grime Detection Strategy - Modular Types140

xx

ABSTRACT

Technical debt is a financial metaphor describing the trade-off between the short-term
benefits gained and long-term consequences of design and implementation shortcuts taken
over the evolution of a software product. These shortcuts typically manifest as design
disharmonies such as code smells, anti-patterns, or design pattern grime.

Design pattern grime, which manifests as the accumulation of unnecessary or unrelated
software artifacts within design pattern instance classes is of serious concern. Design patterns
represent agreed upon methods to solve common problems and are based upon sound
principles of good design; thus, these pattern instances’ decay implies an evolution away
from good design.

Currently, little is known about the causal nature of design pattern grime on technical
debt and quality or how these three issues interrelate. What is the nature of the relationships
between structural design pattern grime, software maintainability, and technical debt
measurement?

To better understand design pattern grime, we have extended the structural grime
taxonomy. We developed an approach to generate design pattern grime instances and inject
them with design pattern grime. Using this approach, we conducted 7 experiments evaluating
the effects of 26 forms of grime, at 6 severity levels within 16 design pattern types, on software
maintainability and technical debt. The results showed that depending upon grime type,
grime severity, and pattern type, grime does significantly affect both maintainability and
technical debt.

We also conducted a verification study on pairs of pattern instances from open-source
software systems to evaluate how well the injection process represents the real effects of grime
and to verify the results of the experiments. The results of this study showed that there is
a disconnect between the injection process and reality, indicating that refinements are still
needed. However, the verification study worked as expected in indicating where issues may
exist in the process.

1

CHAPTER ONE

INTRODUCTION

Quality is free, but only to those who are willing to pay heavily for it.

–T. DeMarco and T. Lister

In 1992, Ward Cunningham developed a financial metaphor to explain the need for

continuous refactoring to stakeholders, coining the term Technical Debt [58]. Technical

Debt has since gained traction as a major concern for software engineers, as detailed in

a 2012 CAST Research report [233]. This report detailed the analysis of 745 applications

comprising 365 million lines of code and found that, on average, there is $3.61 of Technical

Debt per line of code. This result implies that Technical Debt is a significant factor in

the long-term cost and sustainability of a software product. A fact later enshrined in the

following definition of Technical Debt:

“In software intensive systems, technical debt–is a design or implementation

construct that is expedient in the short term, but sets up a technical context

that can make a future change more costly or impossible. Technical debt is a

contingent liability whose impact is limited to internal system qualities, primarily

maintainability and evolvability.” [21]

The research community has explored many different aspects of Technical Debt (TD).

However, the primary focus of this dissertation is Technical Debt Management (TDM).

Technical Debt Management has the primary goals of preventing TD from being incurred

or keeping TD at reasonable levels [164]. These goals are achieved through a set of

2

nine activities, two of which are the focus of this dissertation: TD measurement and TD

identification.

TD measurement concerns the development and evaluation of techniques to estimate

the accumulated TD within a software system [164]. Li et al. [164] identified six categories for

TD measurement, of which the most prominent approach is through the use of mathematical

formulas or models [50,59,60,63,99,160,161,202,203]. Although, several studies have shown

a relationship between the incurrence of TD and a compromise of one or more quality

characteristics (or sub-characteristics), most notably maintainability [164], the relationships

between TD, TD Items, and Quality remains undefined [103].

Thus, we consider the second aspect of TDM we are concerned with, TD identification.

TD identification focuses on the detection of issues resulting from intentional and

unintentional technical decisions [164]. Li et al. [164] identified four categories of TD

identification, with the two most pertinent being:

1. Code Analysis: Source code analysis using various techniques including static analysis

and metrics to identify coding rule violations and architectural or design issues.

2. Dependency Analysis: Analyze the dependencies between software artifacts.

TD Identification is of utmost importance, as the gap between TD, TD Items, and Quality

appears to stem from existing quality models lacking representation of under-studied forms

of TD. One such form is Design Pattern Grime, first identified by Izurieta [132] and later

identified as a form of grime by Izurieta et al. [131] as a part of the TD landscape.

Although the forms of TD have expanded well beyond the TD landscape; Grime was

selected as it affects a software artifact that has a known specification, design patterns

[96]. Patterns are a widely known approach for describing generalized solutions to well-

known problems that occur during software development, and they also provide a means

to encode software design principles and practices, i.e., design knowledge. Furthermore,

3

this knowledge formalized through pattern specification languages, such as the Role-Based

Meta-modeling Language (RBML) [90], provides the basis for the definition and evaluation

of pattern instance decay.

This decay occurs when a pattern instance deviates from its specification [128] by

introducing artifacts or relationships which are not functionally or structurally necessary, we

call this design pattern grime [132].

1.1 Research Design

In this section, we describe the research design comprising this dissertation. In Section

1.1.1 we introduce the problem statement central to this research. In Section 1.1.2 we

describe the design science framework employed in this endeavor. In section 1.1.3 we identify

the research questions considered in this dissertation. Finally, Section 1.1.4 describes the

empirical methods employed in this research.

1.1.1 Problem Statement

As we are considering it, Grime is effectively artifacts negative evolution of a pattern

instance’s architecture and an evolution away from good design. Furthermore, Grime

embodies both Design and Architectural TD (TD introduced in the design phase or affects

the system design or architecture and all of its dependencies). These forms of TD have far-

reaching consequences, as both direct the implementation of the software and can be very

costly to reengineer [186,187,202,278]. Additionally, studying a phenomenon in both forms

of TD can provide insight into techniques to address these more significant problems.

In summary, the overarching goal of this research is to evaluate Grime and its effects on

quality and Technical Debt indices by characterizing its nature, taxonomy, and effects using a

measurement-driven approach. Though specific to design pattern grime, this approach serves

as a general approach helpful in developing a deeper understanding of software engineering

4

phenomena. Studies into the effects and properties of technical debt related phenomena

such as design pattern grime have relied primarily on correlation analysis and observational

study. Thus, little is known about the causal nature of these phenomena when considering

Technical Debt and Software Maintainability. Furthermore, very few studies have explored

the relationship to existing Technical Debt estimation approaches or Maintainability as

defined in operationalized quality models. Towards this, and focusing on design pattern

grime, we ask the following overarching research question:

What is the nature of the relationships between structural design pattern grime, software

maintainability, and technical debt measurement?

1.1.2 Design Science Framework

In this research, we have adopted a design science framework [275]. Design Science, as

introduced by March and Smith [178], describes an approach whereby stakeholders, serving

human purposes, create or improve “things” within technological solutions.

Wieringa [275] identified two critical components for addressing the problems of interest

using Design Science:

• Design Problems: “call for a change in the real world and require an analysis of

actual or hypothetical stakeholder goals” [275]

• Knowldege Questions: “do not call for a change but ask for knowledge about the

world as it is” [275]

These two concepts are related. In that, each of these question types is answered in separate

but interacting ways. First, design problems are answered via the design cycle in which a

proposed solution is designed and evaluated against the stakeholder goals, which generates

new knowledge questions. Conversely, we apply empirical methods within an empirical cycle

to investigate and answer the knowledge questions while generating new design questions.

5

This Design Science framework, when considering the interplay between the two cycles,

is well suited for Software Engineering research. The problems we encounter often require the

evaluation, modification, or creation of software artifacts while also pushing the boundaries

of current theory and knowledge.

1.1.3 Problem Decomposition

This section presents the design problems and knowledge questions to be addressed in

this dissertation and how each is related. To evaluate address the stated problem, we have

used the Goal Question Metric (GQM) [28] approach to define the following research goals

and their related research questions. For the purposes of this hierarchy, we consider both

Knowledge and Design Questions to be Research Questions (RQ).

In order to address our stated problem of understanding the relationship between design

pattern grime, quality, and technical debt, we first need to have a deeper understanding of

Design Pattern Grime. Specifically, a deeper understanding of Class and Organizational

Grime was needed. This need led to the Research Goal RG1. From this goal, we developed

the two research questions:

RG1: Analyze design patterns to elaborate on the complete taxonomy of Class and

Organizational Grime.

RQ1.1: What are the types of Class Grime?

Rationale: This is a fundamental question of this research, inquiring as to the

nature of Class Grime.

RQ1.2: What are the types of Organizational Grime?

Rationale: This is a fundamental question of this research, inquiring as to the

nature of Organizational Grime.

6

The development of this taxonomy helped us to understand the types of grime and how

to design the studies that would allow us to address the stated problem. Specifically, we

were concerned with the following Design Problems(DP):

DP1: How can we conduct a full-factorial experiment to evaluate the relationship between

grime and quality and grime and technical debt when we are unsure how often design

pattern grime occurs?

DP1.1: How can we generate design pattern instances?

DP1.2: How can we ensure design patterns have the correct type of grime?

DP1.3: How do we measure the quality of a pattern instance?

DP1.4: How do we measure the technical debt of a pattern instance?

DP1.5: How do we automate the data collection and experimentation process?

Solving these design problems led to the development of the method described in

Chapter 8 and its implementation. Solving DP1.1 led to the design pattern generation

technique documented in Section 4.3. Solving DP1.2 led to the creation of the Software

Injection approach described in Chapter 6. Solving DP1.3 led to our implementations of

the Quamoco Quality Modeling [270] approach, and eventually, the SIG Maintainability

Model [114] as described in 5. Solving DP1.4 led to the implementation of both the

CAST [233] and Nugroho et al. [203] TD Estimation approaches as described in Chapter 5.

Finally, solving DP1.5 led to the implementation of the Arc Framework as described in 3.

The solutions to these problems led to the ability to address RQ2, using the Arc Framework

and executing the simulation experiments.

The following two RGs address the heart of the stated problem via the simulation

experiments. We refine these two goals into the two research questions. The experiments

are described in detail in Chapter 10 wherein the research questions are further refined.

7

RG2: Analyze design pattern instances afflicted with design pattern grime for the purpose

of evaluation with respect to the ISO/IEC 25010 Maintainability subcharactersitics

[126], from the perspective of researchers, in the context of generated Java™ design

pattern instances.

RQ2: How does each type of grime affect software product maintainability?

Rationale: Evaluate the assertion that as grime builds up in a pattern instance

or software system, it will negatively affect the software or pattern instance’s

maintainability.

RG3: Analyze design pattern instances afflicted with grime for the purpose of evaluation

with respect to the Technical Debt Principal and Interest, from the perspective of

researchers, in the context of generated Java™ design pattern instances.

RQ3: How does each type of grime affect a software product’s technical debt estimate?

Rationale: Evaluate the assertion that as grime builds up in a pattern instance

or software system, it will increase the technical debt principal and interest.

Because the results of the simulation experiments were based on generated design

patterns into which grime was injected, we cannot be sure that this is representative of

actual grime in genuine software. Thus, a new set of Design Problems manifested.

DP2: How do we verify the results of the experiments with real software?

DP2.1: How do we incorporate design pattern detection into the Arc Framework?

DP2.2: How do we track instances of design patterns across versions of a software

system?

DP2.3: How do we modify the Software Injector to allow for controlled injection to

mimic what is has occurred in between versions?

8

The solutions to these design problems directly led to the capability to execute the

verification studies described in Chapter 11. Specifically, the solution to DP2.1 as described

in Chapter 4 led to the ability to incorporate and gather design pattern instance data from

real software systems. Furthermore, the solution to DP2.2 as described in Algorithm 4.3

led to the ability to track patterns across versions. Finally, the ability to further control

the injector was developed and, in combination with the prior solutions, allowed for the

execution of the verification studies in Chapter 11. Thus, we could now handle addressing

the following Research Goal:

RG4: Analyze design pattern instances for the purpose of comparing injected and

observed instances of grime with respect to their ISO/IEC 25010 Maintainability

subcharacteristics attributes and Technical Debt Principal and Interest from the

perspective of researchers in the context of open source Java™ software projects.

RQ4: Do observed and injected grime have a similar effect on the Maintainbility

subcharacteristics and Technical Debt Principal and Interest?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Maintainability and Technical Debt Principal and Interest

as the natural process of grime accumulation.

1.1.4 Empirical Research Methodology

In order to answer the knowledge questions posed, we used and extended the methods

from empirical software engineering. Specifically, we developed an empirical method designed

to understand software engineering phenomena. Towards the evaluation of this method, we

employed taxonomy development to extend the structural grime hierarchies. Using these

taxonomies, we conducted simulation experiments using software injection techniques and

design pattern generation techniques we developed. Finally, we developed a technique to

verify the experimental results, which term a verification study. For both the simulation

9

experiments and the verification study, we needed to collect a large amount of data for which

the specific tools and techniques did not already exist. Thus, the majority of this research

endeavor was focused on developing the Arc Framework, which is an operationalization of

the method itself. An overview of the methods employed to answer our research questions

is further described in the following section.

1.2 Overview of the Dissertation

The body of this dissertation contains 11 chapters. Chapter 2 provides provides

background on the current issues and concepts fundamental to the phenomena under study

and the research methods used.

Chapters 3 – 7 describe the development of data collection and automation framework.

Chapter 3 details the underlying data model, the integration of external tools, and the

control of study workflows. This framework is derived from earlier publications at the 2011

International Workshop on Machine Learning Technologies in Software Engineering [104] and

the 24th International Conference on Computer Applications in Industry and Engineering

[105].

In Chapter 4 we describe the integration of an external design pattern detection tool and

the implementation of design pattern generation used during the simulation experiments.

Chapter 5 describes the implementation of software quality models and technical debt

estimation techniques. This work was based on earlier publications at the 8th International

Symposium on Empirical Software Engineering and Measurement [101], the 6th International

Workshop on Managing Technical Debt [103], and the 11th ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement [129].

In Chapter 6 we describe the software injection technique utilized in the simulation

experiments. This technique is based on work published at the 8th International Symposium

on Empirical Software Engineering and Measurement [101]. Finally, in Chapter 7 we describe

10

our approach to automated detection of design pattern grime, which is used in the verification

studies.

Chapters 8 – 12 discuss the results of the application the empirical studies. In

Chapter 8 we describe the empirical method we have developed to study software engineering

phenomena and which guides the remaining chapters of the dissertation.

In Chapter 9 we define the taxonomies for Class and Organizational Grime. This work

was published in the 8th International Symposium on Empirical Software Engineering and

Measurement [101] and at the 12th Seminar on Advanced Techniques & Tools for Software

Evolution [134].

In Chapter 10 we present the simulation experiments evaluating the effects of design

pattern grime on maintainability and technical debt. These experiments were conducted on

generated design patterns which were injected with varying levels of grime. Next, in Chapter

11 we present the verification studies wherein we compare the results of the natural evolution

of design pattern instances to those which have been injected with similar grime. Finally,

Chapter 12 concludes this dissertation with a summary of the essential findings and a path

for future work.

11

CHAPTER TWO

BACKGROUND AND RELATED WORK

This chapter explores the main concepts and foundational work on which the proposed

research is based. This includes design patterns and design pattern evolution, software decay,

technical debt (TD), and software product quality. The chapter concludes with a section

identifying the gaps in existing research.

2.1 Design Pattern Evolution

Design patterns were widely introduced to the software engineering community by

Gamma et al. [96]. Design patterns are abstract solutions forged in experience to commonly

recurring design problems. These patterns are a type of micro-architecture subject to

evolutionary issues and design decay. However, few empirical studies of a relationship

between design pattern evolution and decay exist in the literature. Rather, studies

involving the evolution of design patterns tend to focus on how pattern change-proneness

[19,31,98,192].

In order to study design pattern instance decay a means to formally specify a pattern

and validate instances is necessary. Various design pattern languages and specification

techniques have been proposed [69, 72, 150, 151, 153, 195, 245, 247, 254] each with the same

goal –a higher level of representational abstraction. Yet, although the specification aspects

may well be understood, the verification of instances that conform to these specifications

remains a hard problem.

The role-based meta-modeling language (RBML) is an approach to specify design

patterns based on an underlying metamodel [90, 150, 151]. This meta-model extends the

UML™ meta-model [1] which allows the instances to be visually described and constrained

12

using the Object Constraint Language (OCL) [2]. The use of OCL allows the defined

specifications to have a varying degree of generality. In order to make use of the specifications,

a means to validate pattern instances against the specification is required.

Kim [148] initially proposed a method for evaluating the structural conformance of

a pattern instance to the RBML specification. This proposal was followed by Kim and

Shen’s [149,152] divide-and-conquer approach. Based on this approach, Strasser et al. [251]

developed a tool to calculate a score for the conformance rating of a design pattern instance

given its RBML specification. Recently, Lu and Kim [168,169] have developed an approach

to validate conformance of behavior and sequence diagrams of pattern instances. Kim and

Whittle [147] utilized RMBL to help generate designs using design pattern specifications.

2.2 Software Aging and Decay

Software evolution describes those processes which affect changes that refine the

requirements and functionality of a software system. Software decay, a specific form of

software evolution, describes a system that has evolved to become “harder to change than

it should be” [71]. Parnas [210] later identified a complementary phenomenon known as

software aging. Software aging describes the effects on system value due to changes in the

system’s environment. Several studies have been conducted on software decay and aging,

as well as on the rejuvenation of software as a means to circumvent the effects of these

phenomena [71,106,123,205,261].

2.3 Technical Debt

Technical Debt is a concept introduced by Ward Cunningham [58] as a financial

metaphor to describe the trade-off between quality engineering and satisfying short-term

goals. The following subsections describe work in the following areas describing the nature

13

of the metaphor, methods of managing Technical Debt, impact and consequence of Technical

Debt, and techniques for measuring Technical Debt.

2.3.1 Metaphor, Definition, and Properties

The notions surrounding technical debt until recently have been informal and under-

specified. In place of this Tom et al. [258] conducted a systematic literature review to

consolidate the concepts surrounding Technical Debt into a single taxonomy. This taxonomy

classifies Technical Debt from either of two perspectives: by the underlying intention behind

the decision (or lack thereof) to take on the debt or the type of artifact in which the debt

occurs.

The intentional perspective is divided into Strategic Debt, Tactical Debt, Incremental

Debt, and Inadvertent Debt. Strategic Debt is debt taken on intentionally as part of a larger

long-term strategy. Tactical Debt is debt taken on intentionally as a reactionary response and

satisfies short-term needs. Incremental Debt is debt taken as several small steps but accrues

very easily and rapidly. Finally, Inadvertent Debt is debt taken on unintentionally and

possibly unknowingly by the software development team. The location or artifact perspective

is divided into Code Debt, Design and Architectural Debt, Environmental Debt, Knowledge

Distribution and Documentation Debt, and Testing Debt.

Beyond classifying and understanding how debt occurs, some researchers have furthered

understanding the metaphor itself. Nugroho et al. [203] indicate that the technical debt

metaphor has several contexts from which it can be viewed, and they specifically look at it

from the context of maintainability. Along similar lines Klinger et al. [154] look at Technical

Debt from the perspective of enterprise development and indicate that using financial

tools, decision theory, stakeholder-based quantification, and developing an understanding

of unintentional debt are potential avenues of interest. Finally, Theodoropoulas et al. [257]

view Technical Debt from the stakeholder perspective and provide a new definition based on

14

the gap between an organization’s technology infrastructure and its impact on quality.

More recent work has looked into the extent and practicality of the technical debt

metaphor itself. Specifically, Schmid [236] [235] notes that as we explore technical debt

the metaphor begins to breakdown. He notes, the intimate connection between future

development and Technical Debt leads to an inability to measure Technical Debt itself

objectively. This is due to the nature of the Interest property associated with technical

debt items. Since technical debt interest has a probability indicating whether it may affect

the system, we should instead focus not on measuring all Technical Debt (Potential Technical

Debt). However, rather we should concern ourselves with the debt items that will have an

impact (Effective Technical Debt) on upcoming feature development or maintenance.

2.3.2 Technical Debt Management

Technical Debt Management consists of several activities [164]. The primary focus

has been identifying, cataloging, and remediation of debt items. Current industry practices

includes identifying and tracking debt as part of the working project backlog [42, 157, 191]

or as part of a separate technical debt list [107, 108, 239]. Essentially, we can think of the

emergence of design disharmonies within a software system akin to taking on debt, and the

longer they are allowed to remain (without refactoring), the more negative influence they

will have on the system [84]. This influence acts as interest on the debt by increasing the

amount of effort required to evolve the software [289].

Guo and Seaman [107, 108, 239] proposed a technical debt management framework

(TDMF). Central to this framework is the Technical Debt List (TDL) stores information

about known technical debt items within a software system. Three activities support

this framework: Technical Debt Identification, Technical Debt Estimation, and Decision

Making. Recently, Guo et al. [109] conducted a case study to evaluate the costs of using the

TDMF. This study showed that after an initial high startup cost, the cost of monitoring and

15

remediation of debt reduces to a reasonable level. Holvitie and Leppänen [118] have further

enhanced the TDMF with an approach called DebtFlag. The main purpose of the DebtFlag

is to reduce information redundancy to provide a more efficient debt propagation evaluation.

This aids in a more accurate estimation of debt impact, interest, and interest probability.

Schmid [235–237] has also focused on developing an approach for selecting which debts

should be removed. Schmid’s work is based on a formalization of technical debt concepts to

extend the TDMF using a 2D matrix representation coupled with an approximation scheme

to select those technical debt items to refactor in the next release. Similarly Stochel et

al. [250] approach this problem using a subsumption model of Technical Debt based on a

modified Value Based Software Engineering [34] cost and estimation approach in order to

estimate the return on investment (ROI) for each item. A technical debt versus portfolio

assessment matrix, using ROI in a similar approach to that of Seaman and Guo [239], is

used to evaluate each item provided the best savings per release (similar to that of Schmid

[235–237]).

Decision support approaches for debt acquisition have been less forthcoming than

for debt repayment. Nevertheless, Falessi et al. [73] are exploring current open problems

concerning this topic as well as the required decision support constructs needed to address

the problem. Ramasabba and Kemerer [215] developed an optimization approach utilizing

multiple projections of a single codebase to evaluate decisions regarding both debt acquisition

and repayment. Griffith et al. [102] conducted a simulation study of TD management

strategies. These simulations showed that combining automated detection with a maximum

TD threshold and remediation sprints is a superior combination. Furthermore, the models

explored in the simulation study are representative of the models identified as used in practice

by Martini et al. [186,187].

As the technical debt landscape has evolved the research community’s focus has

moved from identifying technical debt to the underlying issues surrounding these items.

16

Specifically Falessi and Voegele [74] have recently conducted a case study to evaluate industry

perspectives on design rule priority and validation. Here design rules are considered to be

any empirically validated design principles that enhance software quality. This study found

that classes with a high count of rule violations also tend to be defect-prone. Additionally,

Tufano et al. [264] conducted an extensive case study on 200 open source systems by mining

revision history. They found that code smells, known to affect the maintainability of a

software system, are typically introduced to create the affected artifact. Furthermore, they

found that developers at all levels are prone to creating code smells and that these smells

are introduced more often due to time constraints. Furthermore, Mamun et al. [4] have

also identified the primary causes for technical debt accumulation as: time constraints,

hardware/software integration issues, improper or incomplete refactorings, or use of legacy,

external, or open-source libraries. Additionally, Digkas et al. [64,65] have shown that overall

TD density of a project can be reduced when adding new code, which is cleaner then the

overall project, a result corroborated by Freire et al. [95].

Recently, the InsightTD [227] project has conducted several global surveys in order

to understand TD Managment from the practitioner point of view. This work utilized a

replicable industry survey which has been executed with practitioners from Brazil [224,

226, 227], Chile [213], Columbia, the United States, and Serbia [175, 216]. This work has

helped to illuminate how practitioners worldwide experience and understand technical debt

and confirmed prior results [4, 11, 52, 53] while avoiding the limitations in scope of similar

approaches [12, 17, 51, 173, 204, 246, 248]. It has also provided insights into technical debt

causes and effects both in general [224, 226, 227] and from multiple points of view [214,

223] and levels of experience [91, 174]. Additionally, these researchers have provided tools

and techniques useful to integrate TD Management, identification, and evaluation into the

development lifecycle when considering different process models [92,222]. Furthermore, this

work has explored the impediments to and actions for removing technical debt [93–95].

17

2.3.3 Impact and Consequences

The impact of Technical Debt on engineering effort, project cost, and project quality

is of utmost concern. An initial empirical inquiry conducted by Zazworka et al. [289] shows

that Technical Debt negatively impacts software quality. Furthermore, Zazworka et al. [288]

investigated prioritizing debts using a cost/benefit analysis approach. This study shows that

technical debt negatively affects the correctness and maintainability. Recently, Griffith et

al. [103] conducted a case study across several versions of several open-source Java™ systems

evaluating the relationship between quality model attributes and technical debt measures.

Results show little evidence of a relationship between the CAST [59, 60], SonarQube™ [99],

or Marinescu’s [181] approaches to measuring technical debt principal and quality attributes

in the QMOOD quality model [25].

A key to understanding technical debt and its effects is to be able to understand the

gaps and overlaps that may exist in the landscape [131] of TD item types. Zazworka et

al. [290] identify several types of design debt (e.g., code smells, modularity violations, and

design pattern grime) and tools which detect them. They identified that all the tools indicate

different problems with little to no overlap. Further exacerbating this issue is the work of

Alves et al. [7] which has further defined the technical debt landscape. Furthermore, the

works of Li et al. [164], Alves et al. [6], and Rios et al. [225] have expanded landscape has been

divided into 17 subtypes of Technical Debt (including Security Debt [124, 184, 221]), each

consisting of multiple indicators. The original landscape, as proposed by Izurieta et al. [131]

is now encompassed within the subtype of Design Debt. Fontana, Ferme, and Spinelli [84]

state that although code smells are important components of the technical debt landscape,

certain identified debt items may not constitute debt. Instead, they indicate that domain

knowledge must be used as a filter to identify these misnomers and ensure that an accurate

indication of Technical Debt is provided.

18

2.3.4 Design Debt

Industry practitioners, being closer to the source code, typically focus on Code and

Design Debt [11]. Design disharmonies are a form of software decay that have been

categorized in order to understand their nature. These categories are separated by the level

of abstraction in which they occur (e.g., statements, methods, classes). They may also be

categorized by the software artifacts affected, e.g., source code, unit tests, or databases. We

discuss design defects affecting software systems at the statement, method, class, pattern,

module, and system level in the following subsections.

2.3.4.1 Code Smells Fowler et al. [88] initially described 22 code smells which indicate

(possibly vehemently) that refactoring should be performed. These descriptions also included

possible corrective refactorings. Since then, several others have extended this library of code

smells. Kerievsky [138] added 5 additional code smells and helped to further explain several

of the original code smells, while providing several new corrective refactorings. Mäntylä [201]

and Mäntylä et al. [177] describe a taxonomy re-classifying the original 22 code smells based

on how each affects a system.

2.3.4.2 Design Pattern Disharmonies Initially, Moha et al. [199] defined a taxonomy of

potential design pattern disharmonies and conducted an empirical study to investigate their

existence. This taxonomy includes the following four types of defects: Missing refers to a

design missing a needed design pattern. Deformed patterns are those which are not correctly

implemented according to Gamma et al.’s [96] definition but which are not themselves

erroneous. Excess is the overuse of design patterns in a software design. Distorted design

patterns are distorted instances of a design pattern. Their study was conducted across several

versions of an open-source Java™ project. They detected 38 design patterns instances, of

which three were found to be non-harmful deformed design patterns. Furthermore, their

19

research presented and evaluated multiple detection techniques, including manual, semi-

automatic, and automatic techniques based on a combination of detection strategies and

constraint satisfaction techniques. Unfortunately, this taxonomy was not formally defined.

Izurieta and Bieman [127] presented another taxonomy of design pattern decay. Seminal

work by Izurieta [132] found that pattern realizations tend to accumulate artifacts that

obscure the intended use of patterns. Two distinct categories of design pattern decay were

identified:

Design Pattern Grime – the accumulation of unnecessary or unrelated software artifacts

within the classes of a design pattern instance.

Design Pattern Rot – violations of the structure or architecture of a design pattern.

Compared to the Moha et al. taxonomy, grime relates most closely to the concept of deformed

patterns, while rot relates most closely to distorted design patterns. Empirical studies showed

only the presence of grime, which has led to the further development of three types of grime:

modular, class, and organizational grime, each defined as follows:

Modular grime build-up of relationships involving the classes of a design pattern instance,

where the relationships are unnecessary to facilitate the operation of the pattern.

Class grime build-up of fields and methods in the classes of a pattern instance, where these

artifacts are unnecessary to facilitate the operation of the pattern.

Organizational grime the unnecessary distribution of pattern instance classes across

namespaces or packages.

Empirical studies further showed only significant results for modular grime [128].

The modular grime results led Schanz and Izurieta [234] to further expand the taxonomy

of modular grime. A series of empirical studies across open source systems was conducted

20

to validate the existence of these types of grime. Further empirical studies on grime have

shown implications in the area of testing [128]. Based on this work, Izurieta et al. [131]

indicated that the technical debt landscape should include design pattern decay along with

other types of design defects, such as code smells, anti-patterns, modularity violations, and

specific lower-level code issues that affect design patterns.

Prior work involving design pattern grime has been conducted by Dale and Izurieta [62]

and Griffith and Izurieta [101]. Dale and Izurieta evaluated the effects of modular grime

on Technical Debt. Their work show, through experimentation, that temporary modular

grime types have the most significant effect on Technical Debt. Griffith and Izurieta further

developed the class grime taxonomy and showed, through experimentation, that each type

of class grime negatively affects the understandability of a pattern instance. These studies

utilized an early form of software injection to facilitate the experimental process. Specifically,

Dale and Izurieta used a method that injects modular grime into Java™ bytecode [62].

Griffith and Izurieta used a method that modifies a model of the source code [101].

Later, Feitosa et al. [76, 77] have explored several aspects of grime in respect to

industrial software projects. These studies first explored the evolution of modular, class,

and organizational grime within five industry software systems. Their results showed that,

in general, grime tends to grow linearly and similarly across a project. However, its particular

accumulation location depends upon both the type of pattern and responsible engineer. In

a later case study, Feitosa et al. [76] showed that there are strong correlations between

class and modular grime with a decrease in correctness, moderate correlations between class

and modular grime with a decrease in performance, where these quality characteristics are

evaluated using static analysis tools. Additionally, they found that this result depended on

the project, pattern type, and level of grime. Furthermore, they found that grime tends to

show higher correlations with pattern classes that have a larger number of rule violations.

More recently, Reimanis and Izurieta have extended the grime beyond the structural

21

and into the behavioral domain [134,219,220]. In this work, Reimanis and Izurieta developed

a behavioral grime taxonomy over the modular grime taxonomy based upon the behavioral

deviations including Excessive Actions and Improper Order of Sequences. They conducted

a case study across 20 versions of 5 open source Java™ software systems, and their results

of these studies indicated that behavioral grime has significant effects on the reusability of

design patterns.

Another line of research into design pattern disharmonies has been conducted by

Bouhours et al. [36–38]. They have studied what they term spoiled patterns [37]. Spoiled

patterns are the results of incomplete or failed instantiation of a design pattern, intentionally

or unintentionally. This research is motivated to improve design pattern education, to

motivate better indication of when patterns need to be refactored, and to improve forward-

driven and evolutionary design techniques [36]. Bouhours et al.’s study involved the manual

collection of spoiled patterns based on student implementations rather than those from open

source or industry software [36–38].

2.3.5 Design Debt Identification

The notion of design debt identification has been around nearly as long as the notion of

design defects themselves. Detection efforts can be broken down into three major approaches:

metric-based approaches [179, 193, 200, 265, 272], machine learning and artificial intelligence

methods [139,141,144,145,212,232], and a combination of structural information and metrics

[196–198].

One of the most widely extended methodologies is the detection strategies approach

proposed by Marinescu [179]. A detection strategy is a filtering method that utilizes a

combination of metric thresholds and set theory to identify probable locations of design

disharmonies in code. Ratiu et al. [217] extended the detection strategy approach by

including history and evolution information. This approach increased code smell detection

22

accuracy by observing metrics across multiple versions rather than a single version. Ratiu et

al. [218] and Gı̂rba et al. [110,111] utilize Formal Concept Analysis in order to allow historical

analysis and change analysis to be coupled to the original detection strategy framework.

Following Marinescu, Munro [200] also used product metrics to help define detection

algorithms for design defects. Munro, however, took it a step further (towards formalization)

by defining a template to describe each design defect. Where the template consists of: bad

smell name, measurement/process for detection, and an interpretation (set of rules) defining

the defect [200].

To better understand the nature of code smells and to improve detection techniques

Pietrzak and Walter [211] investigated the possibility of inter-smell relations. This work

paved the road to formalizing the idea of relationships that exist between design dishar-

monies. Walter and Pietrzak [272] conducted additional research utilizing multiple criteria

vectors including programmer experience, metrics, coding rules, historical information, and

other detected code smells in order to increase detection capabilities.

Along the lines of further understanding of design disharmonies, Moha et al [196–

198] conducted a domain analysis to develop a domain-specific language for detection rule

definitions, a process called DECOR. This model was designed to encompass the notions of

metrics, inter-relationships, and structural features.

An extension of Moha et al.’s DECOR approach was the HIST tool of Palomba et

al. [209]. Polomba et al.’s approach utilizes historical information to detect code smells and

anti-patterns, which normally could not be detected. HIST was evaluated on the change

histories of several large open source Java™ projects in order to provide proof-of-concept.

The authors note that the main limitation in their approach is the requirement of having a

sufficiently long version history.

Due to the typical nature of design defects definitions as informally specified issues

in designs or code, several approaches have been proposed to automate developing the

23

algorithms for detection. This notion of automation has progressed from the semi-automated

to fully automated generation of detection algorithms. Mihancea and Marinescu [194] were

the first to propose such an approach. They used a genetic algorithm to tune the parameters

for each filter to improve the accuracy of detection strategies.

In order to deal with the issues of manual or semi-automatic design defect detection,

several approaches have been developed. Kessentini et al. have developed and evaluated

numerous approaches to these problems [139–141,172,176,208]. In these studies, supervised

learning approaches are used to generate detection rules. The results show that rules

generated using simulated annealing, harmonic search, genetic algorithms, and genetic

programming approaches all outperform the results of the original DECOR [196] rules on

DECOR’s training data.

Mahouachi et al. [172] extend the genetic programming approach by including

both detection and correction (via refactoring) together in order to improve both steps

simultaneously. Mansoor et al. [176] have also extended the genetic programming approach to

utilize a multi-objective approach to increase both precision and recall of the generated rules.

In addition, other machine learning approaches have been developed. Recently, Fontana et

al. [16, 87] have detailed an approach to use machine learning techniques for code smell

detection. This work facilitated the development of a benchmark dataset and the evaluation

of multiple classification algorithms against existing tools. Their results show that high

accuracy can be achieved using various classification techniques, given that training data

exists.

Given the reliance of detection approaches on software metrics, it is surprising that

there is little empirical research into the feasibility of these approaches. Schumacher et

al. [238] conducted an empirical study of automated detection within an industry setting.

Using the CodeVizard tool [287], which is based on a metric-driven approach to automated

detection, they found that in comparison to human classification, the automated detection

24

performed very well. They also identified that combining automated detection with human

review decreases the required maintenance effort. Further research into the evaluation of

automated detection was conducted by Fontana et al [83]. This latter study compared four

code smell detection tools across six versions of a single Java™ open source project. This

study shows that the tools evaluated had a tendency to disagree and that although these

tools may prove helpful, they are far from adequate.

2.3.6 Design Disharmonies and Quality

A large body of prior research exists concerning the relationship between design

disharmonies and software quality. A large portion of this research has focused on the effects

of code smells and anti-patterns on software maintainability. Early work was conducted

by Olbrich et al. [207] including two longitudinal case studies across the version history of

two open-source software projects. They showed that the affected classes are more likely to

change, and the studied code smells negatively impact maintainability. A more extensive

study by Khomh et al. [143] conducted a similar longitudinal case study but considered the

relationships between change-proneness and 29 different code smells. The results of this

study similarly showed that affected classes are highly change-prone.

Olbrich et al. [206] conducted another longitudinal study across three open-source

systems. They found that the instances of god classes and brain classes studied exhibit less

change and defects when normalized for size in the systems studied, contradicting previous

results. Later, Khomh et al. [146] conducted a study on 13 anti-patterns in several releases of

4 open-source software systems. The results show that those classes affected by anti-patterns

are more change- and fault-prone than others, when accounting for size. A further study

of 16 open source Java™ system change histories conducted by Romano et al. [228] showed

that changes are more common in those classes affected by anti-patterns. Another study by

Yamashita and Counsell [281] found that code smells are significantly affected by the size,

25

making comparisons between systems of varying sizes impossible.

Unfortunately, change- and fault-proneness are not comprehensive indicators of main-

tainability. Because of this, Yamashita and Moonen [282] conducted an empirical study to

connect code smells to maintainability. This study connected maintainability factors defined

by experts to developer impressions identified during their industrial case study. Yamashita

and Moonen conducted a second multiple case study to develop the connection between

code smells and maintainability [284]. Both studies found that typical indicators such as

change size or complexity are not enough to assess the ability of code smells to predict

maintainability issues. A study by Sjoberg et al. [244] further refined these results while

also indicating that maintenance effort was not significantly affected by studied code smells.

Each of these studies indicated that interactions between code smells should be studied to

understand better how maintainability is affected [280,282,284].

Following this research, Yamashita and Moonen [283] evaluated the effects of inter-smell

relations (previously identified and studied by Pietrzak and Walter [211] and Fontana and

Zanoni [85]). This study was conducted across four Java™ systems known to have code smells.

They found that when artifacts are affected with multiple code smells these smells tend to

interact and affect maintainability. Furthermore, Yamashita and Counsell [281] found that

there is no difference between smell co-location and coupling when considering the effect on

maintainability. Overall, they found that a code smell based approach to maintainability

assessment is superior to a metrics-only approach.

A more quantitative approach to evaluating the effect of code smells on software quality

was conducted by Fontana et al. [86]. This study was conducted across the set of Java™ open-

source systems collected in the Qualitas Corpus [255]. Their results indicate that the most

prevalent code smells are Duplicate Code, Data Class, God Class, Schizophrenic Class, and

Long Method, not discounting false positives due to tool error. They also show a greater

indication of deterioration in maintainability in those systems with a high number of code

26

smells. Finally, the research by Fontana et al. indicates that there is a connection between

the system domain and the effect that code smells have on maintainability, a finding that is

confirmed by Hall et al. [112].

Bán and Ferenc’s study [43] was conducted using 228 open-source Java™ systems and

PROMISE data concerning bug information for 34 of the systems. This study investigated

the relationship between maintainability and anti-patterns and the correlation between anti-

patterns and identified bugs. The results of this study showed that there is a positive

correlation between anti-pattern affected areas of code and bug incidents, and that there

is a negative correlation between anti-patterns and maintainability (as measured using the

Columbus quality model [24]).

Most research has indicated that both code smells and anti-patterns affect quality by

negatively impacting maintainability. However, only a single study has utilized a known

quality model to conduct this evaluation [43]. Furthermore, all of the studies to date have

been case studies, and the results have been restricted to either qualitative analysis or in

the quantitative approaches, only correlation analysis. Given this, it is pertinent that an

approach is necessary that will facilitate experimentation to provide an estimation of effect

size and causal analysis.

There is also an issue in that current approaches are limited to the evaluation of only

those items that can be detected by existing tools, thus limiting the analysis to code smells

and anti-patterns. This is indicative of the need for an approach that can formalize definitions

of design disharmonies in a generalizable way. Finally, there is no evidence regarding the

relationship between design disharmonies and any other quality characteristics defined in the

ISO/IEC 25010 specification [126] such as: Functional Suitability, Reliability, Performance

Efficiency, Usability, Security, Compatibility, and Portability.

27

2.3.7 Measurement

Lastly, there must be a means to measure Technical Debt and its associated properties

in a way that is meaningful to developers and stakeholders alike. Seminal work by Brown et

al. [42] identified the technical debt metrics of: principal, interest, and interest probability.

Subsequently, Nugroho et al. [203] contributed a formal model to calculate measurements

for both interest and principal from a maintainability perspective. Additional measures,

closely related to the technical debt landscape [157, 290] have been proposed to index the

effect that design flaws (e.g., code smells and modularity violations) have on Technical Debt.

For example, Marinescu [180] proposes a method to index the effect on quality produced

by different code smells and anti-patterns based on the type, influence, and severity of

the design flaw instance, thus creating a score that can be aggregated over the size of the

system. In another approach, Nord et al [202] develop a strong foundation for measuring

the Architectural Technical Debt based on the notion of prudent, deliberate, and intentional

debt.

Letouzey [161] developed the SQALE quality and technical debt analysis model, which

provides both the ability to estimate technical debt principal and several visualizations to

illuminate the impact of Technical Debt. Notably, in a recent study Kosti et al. showed

demonstrated that one can effectively estimate TD Principal as measured by SQALE using

a collection of seven well-known maintainability related metrics [155]. Additionally, Curtis

et al. [60] proposed methods to estimate the principal and interest as well as the size, cost,

and type of Technical Debt. Other tools and technical debt estimation approaches have

been developed for an introduction and evaluation of these tools, we suggest Amanatidis et

al.’s [8] study comparing and benchmarking of these tools or Avgeriou et al.’s [22] recent

work comparing existing TD measurement tools.

Given these various approaches for the quantification of Technical Debt and the wide

range of differences in values, Izurieta et al [130] proposed a means to measure the error

28

associated with the calculation of Technical Debt for these methods. They argue that a

means to measure the systematic error introduced by these tools should be included with

their values, similar to other scientific tools, and that a means to compare these tools and

their error be developed. Although, a bit ahead of its time, serious questions have come to

light for the most popular tools such as SonarQube and their estimates of TD Principal [231].

Additionally, there is a growing concern among researchers of the lack of consensus in TD

evaluation between available tools, which has led to a lack of trust in industry [22, 159,231,

253].

Previous research focus has been on the measurement of technical debt principal, but

more recent research has turned towards measuring interest [10, 20, 46, 47, 185, 188, 243].

This shift in direction is due to research indicating that large principal values do not

convey an understanding of the effect that Technical Debt will have on a project. However,

Ampatzoglou et al. [13] have recently shown that artifacts showing similar levels of principal

show similar levels of interest. Additionally, they have shown evidence of a relationship

between TD Principal and Interest. Chatzigeorgiou et al [47] are developing an optimization

technique which attempts to optimize the timeline for repayment based on historical data

and metrics.

2.4 Software Quality

Quality models provide references against which software components can be measured.

Theoretical models such as ISO specifications [125] [126] go only as far as offering guidelines

along many dimensions of quality which must be operationalized to provide a working

solution that the engineering community can use. A common criticism of theoretical models

is that they are too ambiguous to be directly measurable. A comprehensive description of

quality models is beyond the scope of this dissertation. However, Wagner [269] and Ferenc

et al. [79] provide a significant account and history of quality models. We selected three

29

operationalizations of ISO theoretical models: SQALE [161], Quamoco [270] and the SIG

Maintainability Model [114].

In the last decade, the research community has also observed how Technical Debt

has become a popular approach, supported by many tools, to track the progress of source

code development by pointing out disharmonies (i.e., code smells) that need refactoring

[63, 74, 180]. Their remediation can either be undertaken immediately or scheduled for a

later date at the expense of incurring debt (i.e., principal and interest) [7, 42, 157, 203].

Technical Debt should not be confused with software quality, as the former is a metric

that only characterizes the maintainability of a system. The new definition of Technical

Debt (16K definition) explicitly states that “technical debt is a contingent liability whose

impact is limited to internal system qualities, primarily maintainability and evolvability.”

[21]. Although the focus of the definition is on only one aspect of the many dimensions that

make up ISO based quality models, it is important to mention that the SQALE method to

managing technical debt associates remediation costs that affect the technical debt index of

a system by using a remediation function that takes into account all dimensions of quality,

not just maintainability [160]. The SonarQube™ operationalization of SQALE deviates from

its calculation of Technical Debt by only focusing on the technical debt ratio associated with

maintainability. For a more comprehensive comparison between technical debt calculations

and quality assessment approaches, see Griffith et al. [103].

2.4.1 SQALE

The SQALE (Software Quality Assessment based on Lifecycle Expectations) quality

model is a generic approach to modeling software quality and can be applied to any language.

It is based on the ISO/IEC 9126-1:2001 standard [125] (further referred to as ISO 9K). The

approach is based on eight code characteristics organized chronologically in pyramidal form.

At the bottom of the pyramid is testability, followed above by reliability, changeability,

30

efficiency, security, maintainability, portability, and reusability at the top of the pyramid.

Quality requirements such as “Exception Handling shall not catch Null Pointer Exception”

are associated with characteristics in the pyramid and have a remediation cost. If more

than one characteristic is affected by a quality requirement, then an association with the

lowest characteristic is formed. The characteristics at the bottom of the pyramid represent

more important quality dimensions and are meant to aid practitioners when prioritizing

requirements that need refactoring in the code base. SQALE is published under the open-

source license, and several vendors implement it. This case study uses the implementation

of SonarQube’s plug-in as it has become widely adopted by organizations.

2.4.2 Quamoco

The Quamoco quality model was developed explicitly as an extensible meta-model. Its

goal was to bridge a gap between abstract concepts and measurable attributes. The central

concept of the model is a factor meant to represent an attribute or property of an entity, where

the latter represents an essential aspect of quality we want to measure. Two types of factors

exist, quality aspects and product factors. The former represents the more abstract qualities

found in theoretical models such as the ISO standards. The latter represents the measurable

parts of a software component and impacts their associated quality aspect. Factors form

hierarchies; where factors can further refine some aspects of quality. The meta-model is split

into modules (to improve modularization), where the root module contains general quality

hierarchies and fundamental product factors. This allows practitioners to extend the root

module for specific purposes or technologies and to focus on the qualities relevant to their

specific needs.

Quamoco’s base model is an instantiation of the meta-model and uses the ISO/IEC

25010:2011 [126] (further referred to as ISO 25K) as a reference. It is the result of many

years of collaboration by quality experts from industry and academia, and it is comprised of

31

a comprehensive set of factors and measures that capture software quality assessment.

2.4.3 SIG Maintainability Model

The SIG (Software Improvement Group) Maintainability Model represents a program-

ming language agnostic operationalized hierarchical quality model focused on evaluating

maintainability [23, 55, 63, 114, 170]. The original model was based on the ISO/IEC 9126

Software Quality standard [125]. This model was further improved, based on survey results,

to improve the reliability and accuracy of representation in the selection of the underlying

properties. In 2011, the ISO/IEC 9126 standard was replaced by the ISO/IEC 25010

standard [126]. Eventually, the SIG Model was updated to the current definition of Main-

tainability and its sub-characteristics: Analyzability, Testability, Modularity, Modifiability,

and Reusability [23]. The current version of the SIG Maintainability Model is in full

compliance with the ISO/IEC 25010 Standard [267, 268]. The model itself is designed to

be straightforward to interpret.

2.4.4 High Level Differences between Quality Models

Quamoco, SQALE, and SIG are hierarchical models. Quamoco and SQALE both link

issues found in software to quality aspects and sub-aspects, and both use this information

as a means to evaluate the quality of a software component. On the other hand, the SIG

Maintainability Model uses metrics to form properties that are then combined to form quality

aspects and sub-aspects to evaluate the quality of a software component. to The more

prominent differences between these models are:

• Quamoco is defined using a meta-model that characterizes quality models defined for

different circumstances. SIG and SQALE are limited to the model imposed.

• SIG is limited to a weighted summation of a distinct set of metrics. SQALE is limited

to the aggregation of effort estimates through remediation functions. Quamoco is

32

designed to incorporate weighted aggregation, ranking, and a variety of functions to

describe the influence between aspects of the quality model.

• Quamoco models are defined in separate files and are hierarchical (in the sense that one

model can inherit from another). Both the SIG and SQALE models are proprietary

and built into the system.

• Quamoco models are defined such that an evaluation of the current level of quality

can be provided without coaxing issues or rule violations into a unit-based measure.

SQALE utilizes remediation effort as an index of quality, but its proprietary nature uti-

lizes predefined values for each issue without the ability to easily tune or parameterize

those values.

• SQALE is based on ISO 9K, while SIG and Quamoco is based on ISO 25K.

• SQALE and Quamoco focus on all characteristics of internal product quality, while the

SIG model focuses only on Maintainability.

2.5 Research Gaps

The management of design pattern decay forms an important component in managing

software aging and Technical Debt, thus warrants further research. The following is a list of

research gaps that have been identified in this area:

• Design Pattern Grime Taxonomy – Further exploration of organizational and class

grime types is necessary. Initial studies into these types of grime have not yielded any

significant results, but unlike modular grime, the taxonomy for these types has never

been fully developed.

• Quality – The impact of grime on the quality of both software products and pattern

realizations has only been subject to limited study [61,101,127,128,133].

33

• Technical Debt – Current research has looked into how grime plays a part in the

technical debt landscape [131]. The effect of grime on the technical debt value of a

software product and pattern instances has only been studied for modular grime [61].

• Relationships – The notion that different subtypes of grime can be interrelated or that

subtypes of grime and design defects types can be related are another potential area

of study.

• Automation – The ability to detect grime is manual and time-consuming process.

This is partly due to a lack of detection tools required to identify instances of grime

embedded in design patterns realizations.

• Empirical Studies – Only a small body of work concerning empirical inquiry of design

pattern evolution and decay has been conducted. Only a small selection of systems

have been studied of these studies. We expect to expand on the number of case studies

that address design pattern-specific issues across a diverse body of software in several

languages.

• Experimentation – with the exclusion of machine learning experiments, little to

no research has been conducted to develop methods for experimentation in design

disharmony detection and relationships to quality.

2.6 Research Contributions

Given the gaps identified in Section 2.5 this research proposes the following contribu-

tions.

1. The development of a framework for the automated collection of software artifact data,

software issue data, design pattern data, and software measurement data (see Chapter

3).

34

2. The improvement of design pattern data collection and the identification of design

pattern chains, pattern instances across versions (see Chapter 4).

3. The development of a technique for generating design pattern instances for the facili-

tation of design pattern experiments. This technique culminated in the development

of domain-specific languages for both RBML and a pattern generation cue language

(see Chapter 4).

4. A formal benchmarking approach which injects disharmonies and pattern instances into

software systems to provide both a “gold standard” to compare detection algorithms

against and provide the basis upon which experimentation can be conducted. Our

Contribution in this area includes the definition of a formal meta-model (see Chapter

6).

5. An approach to automate the detection of design pattern grime, culminating in a tool

that detects each type of grime (see Chapter 7).

6. The development of a general process for research into software artifact phenomena

and their effects (see Chapter 8).

7. The development of an expanded taxonomy of design pattern grime (see Chapter 9).

8. Analysis of the impact of grime on software product quality measures. The quality

measurement tool has been developed (see Chapters 5 and 10).

9. Analysis of the impact of grime on the technical debt value of a given software product

(see Chapter 10).

35

CHAPTER THREE

THE ARC EXPERIMENTATION FRAMEWORK

The study of software engineering is a laboratory science.

–Professor Victor R. Basili

3.1 Introduction

This chapter details the inner workings of the Arc Experimental Framework. The

Arc framework, simply put, is a tool execution and data aggregation framework. This

framework was designed and implemented with the following goals in mind: (i) execution

of internal and external tools, (ii) data model definition for tool results, (iii) aggregation of

these results into the higher-level measurements, and (iv) process automation. Other tools,

such as SonarQube1, Jenkins2, and TEDMA [80, 81], share these goals, and although they

provide similar capabilities, they do not provide the level of detail and level of automation

provided by the Arc framework.

Organization This chapter is organized as follows. Section 3.1 describes the underlying

architecture of the Arc Framework. The framework defines a data model through which all

of our data may be persisted, described in Section 3.3.2. The described data model, to be

useful, is utilized by a tool execution and workflow-based process, as discussed in Section

3.3. Section 3.4 describes the integration of various Java™software analysis tools into the

Arc framework. Finally, Section 3.5 concludes this chapter.

1https://sonarqube.org
2https://jenkins.io

https://sonarqube.org
https://jenkins.io

36

3.2 Arc Architecture

The Arc framework provides a platform to collect software engineering artifact data.

This data is to be used to conduct or prepare to conduct experiments and observational

studies. These studies necessitate that we collect data related to software projects (across

multiple versions), including software metrics and their measurements, results of static

analysis, results of pattern detection, and results from software quality analysis. Although

each of these types of data is necessary for our work, we also note that the framework must

be extensible to provide the capability to add new forms of data later.

Each of these data requirements leads to the underlying architecture for the Arc

Framework, as depicted in Figure 3.1. This Figure is a very high-level conceptual view,

which shows the various data types contained within the Arc Db provided via a series of

commands/tools executed using a workflow process, and interacting with a well-defined data

model. The key to this framework is the workflow and command structure.

3.3 Workflows

The workflow process of the Arc Framework is based upon the metamodel depicted in

Figure 3.2. The basic component of this model is the Workflow, which contains a sequence

of Phases, each of which can contain a list of Command(s). Along with Commands is the

concept of Collectors. Essentially, Commands are the component which executes any portion

of a workflow to prepare the System for the collection of data. Data collection provided by a

subtype of Command known as a Collector, which collects tool output into the data model.

The Command structure, as depicted in 3.2, is divided into three distinct parts. The

first are the ToolCommand(s) which are based on an externally defined command line driven

tool. Second, are the commands in the AbstractCommand hierarchy consisting of the five

subtypes: PrimaryAnalysisCommand, SecondaryAnalysisCommand, RepositoryCommand,

37

Figure 3.1: Illustration of the overall Arc conceptual framework.

ArtifactIdentifierCommand and BuildCommand. Finally, there are the Collectors which

extract data from results files into the data model. We next further describe the

AbstractCommand hierarchy.

The AbstractCommand hierarchy decomposes non-tool command types into five distinct

subtypes. The first is PrimaryAnalysisCommand is the base conceptual class representing a

tool or command which collects data related to immediately observable aspects of a software

project. An example of such an aspect, are basic code metrics such as Lines of Code or

Number of Methods. Thus, an instance of a PrimaryAnalysisCommand would be a metrics

measurement tool or tool which extracts the underlying structural information of a software

project. Next, the SecondaryAnalysisCommand is the base conceptual class representing a

38

Figure 3.2: Workflow model

tool or other command which utilizes the results of PrimaryAnalysisCommands along with

other data collected locally to evaluate derived measures. An example of such a command

would be a command which executes a Software Quality or Technical Debt analysis. Next,

RepositoryCommand is the base command for accessing the commands of a source code

management library such as git, mercurial, or subversion. Next, ArtifactIdentifierCommand

is the base class for those tools which identify file based artifacts within a project directory.

Lastly, the BuildCommand is the base class for tools based on the libraries used to execute or

analyze build and dependency management tools. Beyond the tools of the AbstractCommand

hierarchy are the Collectors.

Collectors collect the output a tool produces. This output is preprocessed and then

inserted into the data model. At this time, there is only one base class, FileCollector, which

39

extracts information from tool output files. An example of this is the SpotBugsFileCollector.

The SpotBugs tool executes across the binary class files of a project via a ToolCommand

implementation. As SpotBugs executes, it writes the results of its analysis to a temporary

XML file. This file contains a set of rule violations and the location in the program where

the violation occurred. For each violation, the SpotBugsCollector generates a Finding. Each

Finding links to a Reference representing the artifact where the violation occurred. The

SpotBugsCollector stores these pairs in the data model. Once the data is stored, the collector

deletes the intermediary results file.

3.3.1 Example Workflow

A workflow is simply a composition of several phases, which are then composed of

several commands. These commands either read or write data to the data model. Thus, a

typical Java workflow would look something like the one depicted in Figure 3.3. In the figure,

the workflow is in the center surrounded by a rounded rectangle. Each phase is a rectangle

containing the name of the phase. Each phase is separated by a thick green arrow indicating

the flow of the phases and that separate phases must complete prior to transitioning to the

next phase. Additionally, the commands of each phase interact with external entities such as

files in a provided project and the database. We also note that a key representing the specific

Java Tools included in the Standard Java Tooling are provided in the key surrounded by

the green rounded rectangle. Data flow between phases and external entities are depicted as

thin black arrows, with an arrowhead showing directionality of the data flow. Typically, such

diagrams will also include numbers encircled in green which indicate the overall sequence of

the process depicted. With that in mind we describe the provided example workflow.

This example defines a workflow which contains three phases: “Standard Java Tooling”,

“Metrics, PMD, SpotBugs”, and “Quality/TD”. The “Standard Java Tooling” phase begins

with the Java Artifact Identifier which identifies the source and binary file associated with the

40

Figure 3.3: Example workflow for a Java Project.

provided project. As these items are identified it will update the appropriate ArcDb tables.

Next it executes the JavaParser extracting the java components from the code. Finally it

builds the project for later analysis.

The “Metrics, PMD, and SpotBugs” phase executes three primary analyses. Initially,

a metrics analysis executes across the source code. Next, the PMD tool executes and its

results collected. Finally, the SpotBugs tool executes, and its results collected. The results

of this execution, stored in the database, can then act as input to the “Quality/TD” phase.

The “Quality/TD” phase works with prior collected data and executes the two derived

analyses. The first command executes the Quamoco quality framework to evaluate the

internal quality of the software system under analysis based on the aggregation of both

measures and findings and storing these results as measures. The second command executes

a technical debt analysis. This analysis aggregates findings and metrics values into a single

index. Additionally, the technical debt analysis tools can produce an estimate of effort (to

remediate the technical debt issues) based on the calculated index.

41

3.3.2 Data Model

The goal of this framework is the efficient and automated collection of data, in support

of empirical studies, from several external and internal tools. The selected tools will differ

depending on the languages in which the software studied has been implemented. Thus,

we have developed an underlying data model that provides the basis and depth necessary

for the collection of data from several disparate sources. The following describes this data

model.

The data model has four main sections: the essential components relating to the

metadata for a system under analysis, the components to contain pattern related data, the

components to store information relating to static analysis results, finally, the components

necessary to contain the information concerning project artifact data. The following

subsubsections detail each of the sections of the model.

3.3.2.1 System Data. Figure 3.4 defines the data model subsection concerning the

System under analysis. This metamodel contains three primary data collection components.

The first is the System class, which maintains the necessary information concerning the

System under analysis. A system under analysis may have multiple versions. Each version

analyzed becomes a member of the set of Projects. Each Project maintains the version of

the System under analysis, the languages of source code contained in the project.

Additionally, the Project uses the SCM class to maintain information regarding source

code management information. This information includes the repository URL, repository

type, and the branch/tag to which the project belongs. The Project acts as the nexus point

through which the remaining three sections interconnect.

3.3.2.2 Pattern Data. The pattern section of the data model, depicted in Figure 3.5,

contains six main components divided into two categories. The first category describes

42

Figure 3.4: System data section of the data model.

design pattern definitions composed of three components. The first is the Pattern class,

which contains information relevant to specific pattern types, i.e., the strategy pattern. The

second component is the Role, which represents the individual structural components, such

as classifiers and features, contained within a specific pattern type. The third component,

the PatternRepository class, which provides a namespace for different pattern types and

an overall pattern type container. An example used in the Arc Framework is the GoF

repository containing the selected Gang of Four design patterns provided by the Pattern4

detection tool [263].

The second category, in the pattern data section, is related to pattern instances found

within project artifacts and contains several primary components. The main component is

43

Figure 3.5: Pattern section of the data model.

the PatternInstance class, which represents an instance of a specific pattern type realized

within the project under analysis. A project’s artifacts, when needed outside of the main

project hierarchy, can be accessed through the use of References. References, in the case of

PatternInstances, are linked to a given Pattern’s Roles to construct RoleBindings. A set of

RoleBindings then composes a PatternInstance. A PatternInstance, which has representation

across multiple versions of a system, forms a PatternChain. These PatternChains are

associated with the System and provide the ability to evaluate how a pattern instance changes

rather than simply to analyze a pattern instance alone.

44

Figure 3.6: Static analysis data section of the data model.

3.3.2.3 Static Analysis Data This section of the data model, as depicted in Figure 3.6

contains data related to issues detected using static analysis tools and measures collected

using metrics tools. This section is composed of the following two partitions.

The first partition concerns static analysis data and focuses on issue data in the form of

a Finding. A Finding is a single data point relating an artifact within the System to a static

analysis issue. Rules represent Issues within the data model. In the model each Rule is a

member of a RuleRepository, i.e. pmd or spotbugs for Java™ , and contains a Priority and a

collection of Tags. Each Tag provides metadata related to some more general category, i.e.,

45

security or technical debt, to which a rule belongs.

The second partition concerns measurement data. This data represented is the result

of the application of a metrics tool to the System under study and is encapsulated in the

Measure class. A Measure is a single data point, specific to a given project, evaluating some

referenced artifact by a rule defined by a metric. Metrics, in the data model, contains related

Measures and is contained within a MetricRepository, i.e., arc-metrics, but is not specific to

any system or project.

3.3.2.4 Project Artifact Data. This is the largest but most easily understood section of

the data model. This section, depicted in Figure 3.7, directly relates to logical and language

constructs to which most computer scientists and software engineers are familiar. The major

components of this section are the Module, Namespace, File, Type and its subclasses, and

Member and its subclasses. Component definitions depend on the languages used within a

project.

Structurally, for the Project artifact data, we have made some assumptions. First, we

assume a Project has at least one Module. A Module, we assume, will contain at least one

Namespace. In the case that neither of these two assumptions is true, a default Module

or a default Namespace will be created. Namespaces, rather than modules, contain Files.

Files contain Imports (i.e., Java import or C# using statements) and have an assigned

type. A File’s assigned type is selected from the FileType enumeration. These containment

relationships simplify the overall structure to a tree form and allow a logical structure more

closely representing project file structures. The remaining items from this section of the data

model are related to source code artifacts.

These artifacts all derive from the base class Component. Components have a key,

name, and Accessibility and a start and end line to define their location within a containing

File. Furthermore, Components can be either a Type or a Member. The latter representing

46

Figure 3.7: Project artifact data section of the data model.

47

artifacts contained within the former. The subtypes of both Member are representative of

typical concepts found in most object-oriented languages and should be self-explanatory.

Types maintain a field denoting whether it is an interface, class, enum, or unknown type.

Unknowns are simply types referenced in the System under analysis, but which the System

does not itself contain. These can be either language system provided types or library

provided types.

3.4 Integration of Tools

The goal is to efficiently execute tools in the proper order. Toward this goal, each

of the integrated tools is encapsulated, via Commands as depicted in Figure 3.2 and a

ToolCommand using the Apache Commons Exec framework3 to represent and execute

external tools. Although tools may have specific constraints (such as requiring the project to

be compiled before analysis), the framework does not explicitly enforce any such constraints.

Rather, we expect that those who implement the workflows will have created phases meet

these conditions. As an example, static analysis often requires a compiled software system

for analysis. Understanding this issue, we have incorporated the capability to execute build

tools such as Apache Maven4 and the Gradle Build Tool5, within sequential phases of a

workflow. Besides, the previously mentioned build tools, we have implemented commands

for several other tools for the Java™ ecosystem.

Currently we have implemented commands for the following tools: Maven, Gradle,

SpotBugs6 [121] , PMD7, Git8, the Pattern4 pattern detector [263], an implementation of

the Quamoco quality measurement approach [270], an internal Metrics tool, and a Technical

3https://commons.apache.org/proper/commons-exec/
4https://maven.apache.org
5https://gradle.org
6https://spotbugs.github.io/
7https://pmd.github.io/
8https://git-scm.com/

https://commons.apache.org/proper/commons-exec/
https://maven.apache.org
https://gradle.org
https://spotbugs.github.io/
https://pmd.github.io/
https://git-scm.com/

48

Figure 3.8: Integration of Java Artifact Identification with Arc.

Debt measurement tool. Finally, it should be noted that each tool and any required collectors

are provided to Arc via an implementation of a Tool. Several of these tools and thier

implementations and integration into the Arc framework are described in the following

subsections.

3.4.1 Java™ Artifact Identification

The first tool, and arguably one of the most important, is the Java™ Artifact Identifier

(JAI). JAI scans the project directory and identifies and adds those files pertinent to the

analysis into the data model. Specifically, it identifies source files, binary files, and build

files each needed during different stages of the analysis.

Figure 3.8 depicts the JAI tool integration execution flow. This flow, the numbers

encircled in green, is as follows: 1.) The Arc Context loads the Arc configuration when the

Arc system begins running. 2.) The JavaTool is loaded and provides the JavaAICommand.

3.) The JavaAICommand executes and requests 4.) the System and Project information. 5.)

This provided information allows the JavaAICommand to initiate the JavaArtifactIdentifier,

49

Figure 3.9: Integration of the Java Component Analysis with Arc.

which using the ArcConfig and information searches the Project directory for related Java

files. 6.) The Java files found by the JavaArtifactIdentifier are then stored in the Files

section of the Data Model.

3.4.2 Java Component Analysis

A key capability of the Arc Framework is the ability to provide a basis upon which

measurements and issues can use in a component-level quality evaluation process. This

process provided for the Java™ language, through the Java Component Analysis (Java) tool,

uses an internal Java™ ANTLR9 parser. This parser, in turn, provides a ModelBuilder

for the Java™ language. These two components work together to populate the component

level portions of the data model, providing the capability for metrics and other higher-level

analyses.

The analyses provided by the Java tool and its Arc framework integration. Figure

3.9 depicts the Java tool integration and execution flow. This flow, the numbers encircled

9http://www.antlr.org

http://www.antlr.org

50

in green, is as follows: 1.) Initially, the Arc Context loads the Arc configuration when

the Arc system begins running. 2.) Once the system is running, the JavaTool is

loaded and provides the JavaParserCommand. 3.) The JavaParserCommand executes

and requests 4.) the System and Project information. 5.) The JavaParserCommand

executes the JavaModelBuilder, which, using the ArcConfig and information provided

by JavaParserCommand, executes the ANTLR parser to extract type and member level

components from the project source code files. 6.) The Components section of the data

model stores this component-level information.

3.4.3 GitHub Search

In order to conduct empirical studies across open source software, we need a collection

of open source projects to analyze. The projects we are limited to analyzing, due to current

tooling, are Java™ based projects. Such a project can be found in several open-source

repositories hosting sites. Several sites, over the years, have come and gone, but Github

has become one of the most prominent sites and currently hosts a significant body of code.

Thus, we selected to extract software currently hosted on their site and developed a tool to

extract the necessary information.

Figure 3.10 depicts the GitHubSearch tool integration, and execution flow. This flow,

the numbers encircled in green, is as follows: 1.) The Arc Context loads the Arc configuration

when the Arc system begins running. 2.) Once running, the GHSearchTool initializes and

provides to Arc the GHSearchCommand. 3.) The GHSearchCommand utilizes the GitHub

REST API, provided via the GitHub API for Java10. 4.) This library, when parameterized

with the appropriate credentials from the ArcConfig, provides the ability to access and search

GitHub for suitable systems for analysis. 5.) The tool extracts System version information

and repository information into Project and SCM classes, respectively.

10http://github-api.kohsuke.org

http://github-api.kohsuke.org

51

Figure 3.10: Integration of Github Search with Arc.

3.4.4 Git Execution

The previous tool provides the means to extract Software Projects from GitHub, along

with metadata, which would allow these systems to be analyzed. One component of this

metadata is the actual git URL to the project’s repository. In order to use this, we must have

a git client which would provide the means to download and extract the software project.

Thus, we have implemented a tool that utilizes the JGit11 Java library to clone the git

repositories of each project to analyze. A part of this analysis the GHSearchTool extracts

version information for each project from the list of tags in the repository. This information,

once collected, provides the ability to conduct historical or longitudinal studies later. The

Arc Frameworks facilitates these studies by allowing the use of the Git tool in workflows.

Figure 3.11 depicts the Git tool integration execution flow. The flow, the numbers

encircled in green, is as follows: 1.) The Arc Context loads the Arc configuration when

the Arc system begins running. 2.) Once running, the GitTool initializes and provides

11https://www.eclipse.org/jgit/

https://www.eclipse.org/jgit/

52

Figure 3.11: Integration of Git with Arc.

to Arc the GitCommand. 3.) The GitCommand utilizes the JGit12 Java library to clone

the Git repositories of each project to analyze. 4.) This library, when parameterized with

the appropriate credentials from the ArcConfig, and the Project/System SCM information,

allows Arc to clone the project properly. 5.) The project is then cloned by the GitCommand

into an appropriate analysis directory, which then 6.) becomes the project root.

3.4.5 Static Analysis Tools

In software system analysis, the types of tools that detect quality-related issues fall

into two main categories: static and dynamic analysis. Static analysis tools are those which

evaluate the static structural elements of the software project. Precisely, they extract project

artifacts such as source code, executable files, project directory structures, or build files.

These artifacts provide the necessary information used to conduct analyses. These analyses

include metrics measurement, identification of coding issues, identification of potential bugs,

and identification of coding standard conformity issues, to name a few.

12https://www.eclipse.org/jgit/

https://www.eclipse.org/jgit/

53

Dynamic analysis, on the other hand, typically works by executing the software either

via symbolic execution or through actual activation of the System. In the latter case, the

tool monitors execution behavior in order to understand potential issues. Such an approach

can evaluate test-case coverage, security issues, and parallel/concurrent programming issues

(such as livelock and deadlock). Although such issues are essential, the availability of

supporting tools is an issue; thus, for this research, we have limited ourselves to static

analysis.

3.4.5.1 SpotBugs SpotBugs is a fork of the widely popular Java static analysis tool

FindBugs developed at UMD College Park [121]. This tool uses a codification of known

issues and good practices forming a set of rules. Rule violations detected by the tool are

collected and output in XML format. The results provide input to the Arc framework data

collectors extracted the data and entered it into the database. Although SpotBugs is a static

analysis tool, it is dependent on the use of Java Reflection and thus requires the software

project to be compiled into bytecode before analysis. The results of this analysis, along

with the results of another tool, PMD, are used, in part, to evaluate Java project quality, as

described in Chapter 5.

The SpotBugs tool integration is depicted in Figure 3.12. The Figure depicts the path of

execution as numbers encircled in green. This path follows two possible routes both of which

routes start by 1.) Initialization of the SpotBugsTool by the Arc system. The SpotBugsTool

provides three components. The first is the SpotBugsRuleProvider which adds several

SpotBugs related RuleRepositories to the data model. The second is the SpotBugsCommand

which executes the SpotBugs external tool. Finally, the last item is the SpotBugsCollector

which extracts issues from the resulting XML file. 2.a.) The SpotBugsRuleProvider, during

system data model initialization, will construct the RuleRepositories and add Rule definitions

to each repository. Each repository, once constructed, is (3.a.) added (along with its

54

Figure 3.12: Integration of SpotBugs with Arc.

containing rules) to the data model. 2.b.) During the execution of the Arc system, the

SpotBugsCommand extracts file information from the data model, and (3.b.) uses this to

execute the SpotBugs external tool. 4.) SpotBugs produces a results file, which 5.) is then

read by the SpotBugsCollector. The SpotBugsCollector extracts the found issues. 6.) These

issues are used to construct and store Findings in the data model.

3.4.5.2 PMD PMD is another Java static analysis tool, similar to SpotBugs. Like

SpotBugs, PMD uses a codification of known issues and good practices as a set of rules. The

differences in rules, aside, PMD, unlike SpotBugs, does not require a compiled program for

analysis. Instead, the analysis uses only source code to detect rule violations. The tool stores

these violations in an XML file from which data is extracted and used in the evaluation of Java

project quality. This process has been codified into the PMDToolCommand and integrated

55

Figure 3.13: Integration of PMD with Arc.

into the Arc Framework.

Figure 3.13 depicts the PMD tool integration and its execution flow. This flow, indicated

by the numbers encircled in green, follows two possible routes. Initially, both routes start

with the 1.) initialization of the PMDTool by the Arc system. The PMDTool provides three

components. The first is the PMDRuleProvider, which adds a PMD related RuleRepository

to the data model. The second is the PMDCommand, which executes the PMD external tool.

Finally, the PMDCollector extracts issues from the results of executing the PMD external

tool. 2.a.) The PMDRuleProvider, during system data model initialization, will construct

the RuleRepository, add Rule definitions to the repository, and then 3.a.) add all of these to

the data model. 2.b.) During the execution of the Arc system, the PMDCommand extracts

file information from the data model, and 3.b.) use this to execute the PMD external tool

within the confines of the project directories. 4.) This execution results in the creation of

56

a results XML file, which 5.) is then read by the PMDCollector. The PMDCollector then

extracts the found issues 6.) to construct and store Findings in the data model.

3.4.5.3 Pattern4 Design Pattern Detector Tsantalis et al. [263] developed the Pattern4

design pattern detection tool. Chapter 4 details the use and integration of this tool and other

algorithms developed (to collect and cleanse design pattern data) into the Arc framework.

3.4.5.4 Metrics Analysis Tool We have developed a tool to analyze software systems,

during the primary analysis phase of the workflow, and collect several well-known metrics.

Metrics analysis works by constructing measures for each component measured. The metrics

tool then stores these values in the data model. Chapter 5 describes this process, the

implemented metrics, and the integration into the Arc framework.

3.4.6 Build Tools

A build and dependency management system is typically employed to package a software

system efficiently. Modern programming systems provide this capability through a myriad

of tooling. Examples of such tools are Apache Maven13 and Gradle14 for Java™, Scala

Build Tool15 for Scala, and the combination of NuGet16 and MS-Build17 for .NET. We have

focused on the two main Java build and dependency management tools: Apache Maven and

the Gradle Build tool to facilitate this research. Their use and integration are as follows.

3.4.6.1 Maven The Apache Maven tool provides the capability to build nearly any type

of Java application through the use of XML configuration files. The configuration provides

13https://maven.apache.org/
14https://gradle.org/
15https://www.scala-sbt.org/
16https://www.nuget.org/
17https://www.microsoft.com/en-us/build

https://maven.apache.org/
https://gradle.org/
https://www.scala-sbt.org/
https://www.nuget.org/
https://www.microsoft.com/en-us/build

57

Figure 3.14: Integration of Apache Maven with Arc.

extensive capabilities for building, automated test execution, dependency management, and

a default project directory structure exploitable during analysis.

Projects utilizing Apache Maven can easily be manually compiled from the command

line using the Maven command-line tool. Tool execution logic has been encapsulated into

an Arc ToolCommand for use within Arc workflows, as depicted in Figure 3.14. The process

of the MavenTool execution is as depicted by the numbers encircled in green. The execution

flow is as follows: 1.) The Arc system initializes the MavenTool, which then provides the

MavenCommand to the Arc system. 2.) The Arc system then executes the MavenCommand,

which 3.) extracts from the System, Project, and Files tables the necessary information

needed to build the System correctly. 4.) At this point, the framework executes the

Maven command-line tool (as controlled by the provided pom.xml build configuration file)

58

Figure 3.15: Integration of Gradle with Arc.

5.) utilizing the files in the project root. 6.) The output of this execution is the compiled

project ready for analysis.

3.4.6.2 Gradle The Gradle tool provides a similarly highly configurable capability for

building Java™ projects. Unlike Maven, Gradle uses a Groovy DSL to control the build

process and manage dependencies. Similar to Maven, Gradle does provide the ability to

utilize the existing Maven infrastructure for locating and utilizing dependencies.

Projects utilizing Gradle can easily be manually compiled from the command line using

the Gradle command-line tool. The tool execution logic has been encapsulated into an Arc

ToolCommand, similar to the Maven command, for use within Arc workflows, as depicted

in Figure 3.15. The process of the GradleTool execution is as depicted by the numbers

59

encircled in green. The execution flow is as follows: 1.) The Arc system initializes the

GradleTool, which then provides the GradleCommand to the Arc system. 2.) The Arc

system then executes the GradleCommand, which 3.) extracts from the System, Project,

and Files tables the necessary information needed to build the System correctly. 4.) At this

point, the framework executes the Gradle command-line tool (as controlled by the provided

build.gradle build configuration file) 5.) utilizing the files in the project root. 6.) The output

of this execution is the compiled project ready for analysis.

3.5 Conclusion

This chapter describes the basic concepts and components of the Arc Framework. This

framework is the heart of the underlying method, which guides the experiments and studies

found within this dissertation. In subsequent chapters, we build upon this framework and

explore the remainder of the methods and techniques used to facilitate data collection and

execution of our studies.

60

CHAPTER FOUR

COLLECTING DESIGN PATTERN DATA

Design patterns require neither unusual language features nor amazing

programming tricks with which to astound your friends and managers.

–Gamma et al. [96]

4.1 Introduction

This chapter presents our approach to collecting design pattern data from a software

system. One of the most difficult aspects of design pattern grime research is collecting

the initial data. Unlike other forms of phenomena identification which work with artifacts

of the language (i.e., static analysis issues, code smells, or antipatterns), it is difficult to

detect grime directly. Grime detection subdivides into two steps. The first step involves the

collection of the raw data from a design pattern detection tool, and the second step involves

the cleansing of the data into a form suitable for identifying issues such as grime.

Similarly, experimentation with grime wherein we inject the grime instances is also

tricky. This difficulty stems from the fact in order to inject grime that we must first have

a design pattern instance. “Wild” design pattern instances (those found in open-source or

industry software) do not distribute evenly (if at all) across pattern types or already contain

an unknown level of grime. Thus, it is to our benefit to have the ability to generate design

patterns instances to alleviate these issues.

This chapter grime detection and the two primary problems note prior. The first

problem in grime detection is the need to detect design patterns. The detection tool we

have selected, and its underlying operation are described in Section 4.2. This section

further describes the subproblems related to pattern detection. These problems include

61

evaluating the quality of the data and connecting pattern instances across versions of the

software system. We alleviate these issues through the development of several techniques

described in Section 4.2. The second problem of generating design pattern instances, for

use in experimentation, is described in Section 4.3. This section further illustrates how this

process integrates into the Arc Framework. Finally, this chapter is concluded in Section 4.4.

4.2 Design Pattern Detection

The first requirement to understanding and experimenting with design pattern grime is

the ability to detect a software systems existing design pattern instances. Several methods

have been proposed based analyzing the structural and behavioral aspects extracted from

the software. Initially, techniques focused only on the structural aspects [18, 26, 29, 56, 57,

78,119,137,156,245,252,263,279,291] but as research progressed approaches began to focus

on a combination of structural and behavioral analysis with or without semantic analysis

[15,33,66,67,116,117,122,240,241,259,273,274].

Upon reviewing the available methods and their proposed tools, we selected the

Similarity Scoring Approach (SSA) as implemented by Tsantilis et al. [263] in their tool

Pattern4. This tool was selected to fulfill the following requirements: (i) simple, quick

execution separate from other tools such as IDEs, (ii) executable at the command line,

(iii) capable of detecting a majority of the GoF design patterns, (iv) capable of analyzing

Java software systems, and (v) ease of processing results. The Pattern4 tool fulfills these

requirements, and next, we discuss its underlying algorithm.

The Pattern4 tool employs SSA, as shown in Algorithm 4.1, to detect design patterns

given knowledge of their structure. Structural knowledge encodes a pattern definition

through a set of four structural design matrices: (i) associations between class roles, (ii)

generalizations between class roles, (iii) abstract class roles, and (iv) similar abstract method

invocations between classes. This data is extracted by the tool using Java™ reflection and

62

Algorithm 4.1: Similarity Scoring Algorithm [263]

Require: A: an nA × nA matrix of a pattern specification graph GA

Require: B: an nB × nB matrix of a system graph GB

Ensure: S: an nA × nB real valued matrix of normalized similarity scores, in range [0, 1],
where sij represents the similarity between vertex j in GA and vertex i in GB

1: function SimilarityScore(A, B)
2: A← adjMatrix(GA)
3: B ← adjMatrix(GB)
4: Z0 ← 1 // nB × nA matrix of all 1’s
5: repeat
6: Zk+1 ← BZKAT+BTZKA

||BZKAT+BTZKA||1 // for an even number of times
7: until convergence
8: S ← ZK

9: return S
10: end function

resulting in a graph of the software system.

This graph is processed using a set of heuristics (such as starting with generalization

hierarchies) to locate candidate pattern instances. From these candidate pattern instances, it

derives their structural matrix representations. The extracted matrices and pattern-specific

matrices (as an example, see Figure 4.1) act as input to the SSA Algorithm. The algorithm

compares these matrices and results in a similarity score for each pattern type. A pattern

type that scores above a particular threshold, for a particular candidate instance, is assigned

to that instance.

The actual pattern instances, once identified, are then encoded into an XML file

composed of a single project tag, within which are a series of pattern tags (one for each

of the 16 pattern types). Each pattern tag is composed of multiple instance tags. Each

instance tag is composed of a series of role tags. role tags each map the named Role to an

element within the software system (a class or a method). Although this process works well

and is capable of identifying design pattern instances, it is not without its shortcomings. In

the following section, we address these shortcomings and discuss our approaches to alleviating

63

(a) Associations (b) Generalizations

(c) Abstract Classes (d) Similar Abstract Method Invocations

Figure 4.1: Example matrix breakdown of the Abstract Factory Pattern. The circles (nodes)
in each graph represent class roles, and links represent the presence of that type of connection
(Association, Generalization, Abstraction, Method Invocation).

them.

64

4.2.1 Data Cleansing

We have identified three major shortcomings through our use of the Pattern4 tool. The

tool’s results produced appear, anecdotally, to consider certain pattern instances as more

than one instance. That is, in cases where generalization hierarchies form a main body of

the pattern, the tool appears to identify multiple pattern instances based on the subtypes,

rather than finding a single instance based on the root of the hierarchy (a similar issue was

noted by Reimanis and Izurieta [220] and Feitosa et al [77]). The second shortcoming of

this tool is the lack of identification of several optional roles (c.f. 4.2.2) along with abstract

roles providing generalization hierarchies in the pattern specification. The final issue is

the inability of the tool to report on patterns implemented through language idioms (i.e., an

observer pattern implemented in Java™ using the Observable interface). Although we cannot

alleviate the third shortcoming, we alleviate the first two through an algorithmic approach

based on RBML.

Our approach implements RBML using a YAML specification. These specifications

provide the framework, along with mappings between RBML roles and Pattern4 instance

roles, the capability to validate detected pattern instances. These instances detected using

the Pattern4 tool and collected from a result XML file. The resulting roles map from their

Pattern4 names to the RBML names and connect to the identified data model components

extracted from the XML file. This mapping provides the necessary information to construct

pattern instances in the Arc data model. These initial PatternInstances are used as input

to the Pattern Coalescing Algorithm, as shown in Algorithm 4.2.

The algorithm (similar to the coalescence approach of Reimanis and Izurieta [220])

uses the initial PatternInstances to identify instances sharing a common subset of roles and

pattern type that can coalesce. Coalescence uses a two-pass approach, as follows. First, the

set of candidate pattern instances uses pattern type to form partitions. Once partitioned,

the algorithm uses contained generalization hierarchies to control expansion (at line 5 of the

65

Algorithm 4.2: Pattern Instance Coalescing Algorithm

Require: R: Result set of Pattern Instances from Pattern Detection

1: procedure Coalesce(R)
2: map← partition(R) . pattern instances keyed by pattern type
3: for all (k,P) ∈ map do
4: for all p ∈ P do
5: p← expand(p) . Expand each instance
6: end for
7: end for
8: for all (k,P) ∈ map do
9: P ← P\compareAndCombine(P)

10: end for
11: R ← map.values
12: return R
13: end procedure

algorithm). Expansion occurs in both directions (up and down the generalization and across

associations). The pattern instance adds each class, which is not already a member (if the

class fulfills a role in the pattern, as defined by the RBML). Next, the process of combining

pattern instances begins.

For each pattern type and the instances assigned to that pattern type, we call the

method compareAndCombine(. . .). This method takes a set of pattern instances as input

and compares each pair, merging those which share a common set of classes. Finally, the

algorithm updates both map and the set R to reflect the current set of complete instances,

returning R.

4.2.2 Pattern Chains

A part of the research herein is to evaluate the evolution of design patterns. The

evolution of a single design pattern instance, observed at discrete instants of time (i.e.,

releases), forms a sequence, which we call a pattern chain. A pattern chain provides a useful

concept for evaluating the evolution of a pattern instance but adds a layer of complexity in

66

the process. This complexity stems from the requirement to both identify patterns across

observations, a process we call pattern tracking.

Tracking pattern instances across observations require that we define a pattern instance

identity. An initial definition, derived from the specification of the parent pattern type, can

be simply stated as a set of Classifier Roles, Feature Roles (fulfilling the field and methods

within the classifiers), and Relationship Roles. A pattern instance is then a mapping from

the entities in the RBML roles to the actual artifacts in the software system, which is called

a binding.

For a binding to work as the definition of an instance’s identity, we must consider

role types. A role is either optional or mandatory, where a mandatory role plays a role

contributing to a design pattern specification with a multiplicity having a lower bound greater

than or equal to 1. Having a lower bound multiplicity of 0, on the other hand, indicates an

optional role. A role binding refers to the pairing of a role with a component in the system.

Putting this together, we define a Pattern Instance Identity as the collection of role bindings

for all mandatory roles in the pattern specification.

This definition works well for a single version of a software system. It provides a

distinction between both pattern instances of the same type and pattern instances of the

same type. Such a distinction is necessary, but also insufficient to distinguish among the

same pattern instance across multiple versions of a software system. Thus we need to refine

the notion of identity further.

Across multiple versions of a system the core identity component, the set of role

bindings, may change in size as the pattern evolves. This change in size presents

a significant problem in tracking the pattern. To address this we define the pattern

chaining operator, ≺p, such that for any two pattern instances P1 and P2, P1 ≺p

P2 indicates that P1 precedes P2 in the chain and that P1 and P2 are the same

pattern instance separated by versions of the software. The semantics of this opera-

67

tor is defined as follows: P1 ≺p P2 ≡ [(B(P1) ⊆ B(P2)) ∧ (B(P1)m \B(P2)m = ∅)] ∨

[(B(P2) ⊆ B(P1)) ∧ (B(P2)m \B(P1)m = ∅)]. Where, B(X) is the set of role bindings for

pattern instance X and B(X)m is the set of role bindings for pattern instance X concerning

only those roles which meet the previous definition of mandatory roles. This operator is

designed to encompass the logic of identifying a pattern instance as it either grows or shrinks

throughout its evolution.

Pattern evolution creates 5 cases to address. (i) The pattern expands by adding new

role bindings. (ii) The pattern shrinks by removing role bindings. (iii) The pattern remains

unchanged. (iv) The pattern no longer exists, or (v) the pattern reappears. In the first case

(expansion), a chain links two versions of a pattern instance, P1 and P2. This link occurs

iff either the set of role bindings of P1, B(P1), is a subset of the role bindings of P2 and the

set difference between the set of role bindings for mandatory roles of P1 and the set of role

bindings for mandatory roles of P2 is the empty set. Thus, for expansion, the prior version

of the pattern instance should contain the same role bindings as the following version and

thus will be a subset of the following version. Furthermore, the difference in mandatory

roles (those comprising the identity of an individual version), when using symmetric set

difference focusing on the following version, P2, the difference should be the empty set. A

similar line of reasoning follows for the second case, but we swap the versions as we expect

the pattern to be contracting, and thus role bindings have been removed. These two cases

are indicated in the pattern chaining operator by the clauses separated by the primary or

operator. Additionally, the first two cases capture the third case. The fourth and fifth cases

require the tracking approach to look at all chains (including those which have ended) as

possible chain candidates.

Algorithm 4.3 defines the process for constructing pattern chains. This algorithm takes

as input the Project under analysis, which is associated with a particular version of a software

system. As depicted in Chapter 3 Figure 3.5 each project is contained with a System, and

68

Algorithm 4.3: Pattern Instance Chaining Algorithm

Require: P : Current project under analysis

1: procedure ChainDetection(P)
2: s← P .system
3: chains← s.patternChains
4: if chains = ∅ then
5: createChains(P .patterns)
6: else
7: for all p ∈ P .patterns do
8: chain← ∅
9: for all c ∈ chains do

10: if c.matches(p) then
11: chain← c
12: break
13: end if
14: end for
15: if chain 6= ∅ then
16: chain← p
17: else
18: chains← createChain(p)
19: end if
20: end for
21: end if
22: end procedure

that System also contains a collection of PatternChain(s). Each PatternChain is composed

of a set of PatternInstances forming the chain across each of the Projects. Thus, we can

extract all the needed information from the Project alone. Initially, the provided Project is

used to extract the parent System. The System provides its set of PatternChains, to the

variable chains. If the set is empty, then this is the first version (or Project within the

System) to be processed. At this point, the algorithm constructs a new chain per individual

unknown pattern instance, as detailed in Lines 6 through 21.

In the case of existing chains, for each pattern instance in the Project, the algorithm

determines if it is a member of an existing chain or the start of a new chain. Thus, for

69

each chain in the set of known pattern chains, the algorithm determines if the current

pattern instance, p, matches the chain. The matches(. . .) operation is an implementation

of the pattern chaining operator which tests whether p−1 ≺p p0, where p−1 is the previous

version’s pattern instance in the chain and the current version, p0. In the case of a match, the

algorithm sets the variable chain to the match, and the algorithm stops searching. Otherwise,

the algorithm will continue searching for a match. If there is a match, the algorithm adds

the current pattern instance, p, to that chain. Otherwise, the pattern instance starts a new

chain.

In the following subsection, we discuss how the pattern detection tool, pattern coalescing

algorithm, and pattern chaining algorithm work together. We also discuss the combination

of these three components via their integration into the Arc Framework.

4.2.3 Integration into Arc

The goal of the described tools is to provide the capability for pattern data collection.

Pattern data collection is a small part of the larger data collection framework, including

related software quality measurements, metrics measurements, and issues affecting the

software product, as described in Chapter 3. Thus, to further complete the Arc framework,

pattern data collection is integrated as follows.

Figure 4.2 depicts the Pattern4 tool integration, and execution flow. The flow,

the numbers encircled in green, is as follows: 1.) The system initializes the DPDTool

which then initializes the components: Pattern4Command and Pattern4Collector. 2.)

The Pattern4Command then executes the design pattern detection process embodied in

Pattern4Tool. 3.) The Pattern4Tool executes the command line Pattern4 tool across

the compiled version of the Project, which generates the Results XML file. 4.) The

Pattern4Collector then reads these results. 5.) The Pattern4Collector utilizes the data

from the results XML file and 6.) the Component Table(s) and Project Table of the

70

ArcDb to generate candidate PatternInstance(s). 7.) The Pattern4Collector is determines

if InstanceCoalesce is to be used (8a.) or if the candidate PatternInstances are to be

stored directly (8b.). In the latter case, 8b.) The instances are directly stored into the

Arc data model, and the process continues at Step 10. Otherwise, 8a.) These candidate

PatternInstances are then passed to the Pattern4Command. 9.) The Pattern4Command

executes the InstanceCoalesce algorithm (see Algorithm 4.2) to reduce the set of candidate

instances to the set of actual pattern instances. 10.) The final set of PatternInstances is

entered into the Arc data model and passed through the PatternChaining algorithm (see

Algorithm 4.3) to produce new pattern chains or expand existing chains. 11.) Finally, the

created or expanded chains are then entered or updated in the Arc data model.

4.2.4 Summary

This section detailed the pattern data collection approach. This approach includes

the ability to cleanse the data, ensuring that identified pattern instances are complete and

accurate. This set of pattern instances forms pattern chains across software versions to

provide the capability to observe pattern evolution. Each component of this approach is

integrated into the Arc framework to provide the ability to integrate pattern data with

the other forms of information collected. In the following section, we consider the issue of

collecting a large enough sample of design pattern instances necessary to conduct experiments

with design patterns, which leads to an approach for design pattern instance generation.

4.3 Design Pattern Generation

Design pattern generation, or a curated collection of verified and validated pattern

instances, is required as the raw data necessary for design pattern experimentation.

Experiments evaluating the effects of phenomena, such as design pattern grime, on pattern

instance measures (such as quality or technical debt) require a large sample of each type of

71

Figure 4.2: Integrating Pattern4 and Design Pattern Data cleansing into Arc.

pattern. Such a sample, in the naive approach, would require data collection across a vast

number of software projects to identify the number of instances needed. One approach would

be to utilize existing curated design pattern data sets such as the Percerons repository [9].

Unfortunately, even this repository is limited in the number of collected pattern instances

per pattern type and is not necessarily free of error due to manual curation. To overcome

these limitations, we have developed a method using RBML specifications to generate design

pattern instances that integrates into the Arc framework. This integration, the supporting

architecture, and the method itself described in the following subsections.

72

Figure 4.3: Pattern Generation class diagram.

4.3.1 Design Pattern Generation Architecture and Method

Figure 4.3 depicts the design pattern generation architecture. The architecture’s

controlling component is the Generator class. This class contains a set of Abstract-

LanguagePlugin classes. Each class implementing this abstract class, i.e. JavaPlugin,

provide four components. The first component is the AbstractDirStructGenerator, which

generates the project directory structure and its containing files. The generation of

73

these files requires language-specific functionality. In the case of Java™ we have two

separate implementations, one for Maven and one for Gradle. Both implementations

use a language-specific implementation of AbstractFileGenerator, the second component,

to generate basic project files (such as a “README.md” file). After file generation,

the AbstractPatternGenerator, the third component, provides the logic for design pattern

generation and is used to generate the data model constructs.

These generated constructs are then placed in the ArcDb and are used by the final

component, the AbstractSourceBuilder. The AbstractSourceBuilder executes a collection of

AbstractArtifactBuilder(s) to realize the physical file and directory contents as represented

in the data model. AbstractArtifactBuilder is specialized into subtypes corresponding

to the data model source artifact components. The AbstractSourceBuilder utilizes the

ArtifactBuilderFactory to construct each of the AbstractArtifactBuilder(s). Currently this

process is only setup for the Java™ language, but it can easily be extended to other languages.

The overall generation is described by Algorithm 4.4.

This algorithm requires both the RBML pattern specification and the Pattern Cues for

the pattern type to be constructed. RBML, as described in Chapter 2 is used to specify design

patterns through an extension to the UML combined with OCL. Pattern Cues, specified by

the Pattern Generation Cue Language (PGCL), as defined in Section 4.3.2, provide additional

direction to the pattern generation process concerning language specific implementation

details. A DSL provides the capability used to express these specifications as external Groovy

scripts. These scripts are loaded at runtime by the generation system and provided to the

algorithm. The algorithm outputs data model constructs and their physical representations

in a constructed project root and source files. This process, as detailed in the algorithm,

consists of two parts.

The first part initializes the generator. The algorithm selects one of the cues (at random)

from the PGCL script provided. Next, the algorithm constructs the system and project by

74

Algorithm 4.4: Pattern Generation Algorithm

Require: R: RBML Pattern Specification
Require: L: PGCL Pattern Cues

1: procedure GeneratePattern(P)
2: cue← selectCue(L)
3: initialize(cue)
4: sys← createSystem()
5: createProject(sys)
6: map← [:]
7: for all j ∈ R.joins do
8: map[j.shared]← selectOrCreateType(j.shared)
9: for all b ∈ j.blocks do

10: if b.src = j.shared then
11: map[b.dest]← selectOrCreateType(b.dest)
12: createRelation(j.shared, b.dest, b.rel)
13: else
14: map[b.src]← selectOrCreateType(b.src)
15: createRelation(b.src, j.shared, b.rel)
16: end if
17: end for
18: end for
19: end procedure

calling the createSystem() and createProject() methods, respectively. Once the generator is

initialized the second part of the process commences.

The second part constructs the components represented in source code. This process

starts by iterating across each joined set of role blocks (model blocks sharing a common

classifier role). A role block is a relationship role connecting a pair of classifier roles

(which may be the same Role). When creating the source and destination types, the

selectOrCreateType(. . .) method is called. This method selects an existing Type (fulfilling

the required Role) that does not participate in a model block fulfilling the current relationship

Role. Otherwise, this method creates a new Type (class, interface, or enumeration) as long as

the multiplicity upper bound of the Role is not exceeded. Once the source and destination

75

roles are created/selected, the algorithm constructs the relation between them using the

createRelation(. . .) method.

These creation methods (createOrSelectType() and createRelation()) produces two

components. The first is an instance of one or more entities from the Arc data model.

The second component is the physical representation of that item (whether it be folders,

files, or file contents) on disk generated using a set of language-specific templates. These

templates use PGCL cues to augment their output. Thus, once this algorithm is complete

for a given pattern, a buildable project exists on disk, and the necessary components exist

within the ArcDb.

4.3.2 Pattern Generation Cue Language

Design patterns help software engineers address commonly occurring design problems

through a set of general solutions [96]. This layer of abstraction had led to a variety of known

implementation approaches of each pattern type in a given language (where some are better

than others). To address language-specific implementation details and to guide generation

using well-known implementation methods, we developed an templating approach. This

meta-model for this approach is depicted in Figure 4.4.

The primary components defined in the meta-modelare the Cue, CueContainer,

PatternCue, TypeCue, FieldCue, MethodCue, and CueManager. The Cue shares its name

with a given Pattern and provides the base code generation facilities. Additionally, the Cue is

provided with the templateText which when combined with a component is used to generate

code. Extending these capabilities is the CueContainer which also maintains a collection of

child cues. Directly extending this CueContainer are the PatternCue and TypeCue which

provide specialized handling for generating either an entire pattern, or a specific type within

a pattern, respectively. Next, there are the FieldCue and MethodCue specializations of Cue

which provide the behavior for generating fields or methods within the context of a TypeCue.

76

Figure 4.4: Pattern Generation Cue Language meta-model.

Finally, the CueManager provides the capability load cues for a given pattern and to select

the next cue for that pattern.

Figure 4.5 depicts an example of the PGCL for a Java™ specific implementation

of an lazy initialized Singleton. The example begins with the definition of the pat-

tern cue within the section start_pattern: LazyInit...end_pattern:LazyInit.

The “LazyInit” cue specifies two types with start_type blocks, each of which have

a name matching a role defined within the RBML definition. These types specify

that the system will override the default generated content using the template pro-

vided. Components of the type can be generated by adding the template for that

77

start_pattern: LazyInit
start_type: Singleton
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

protected [[InstName]]() {}

[[methods]]
}
end_type: Singleton

start_type: ConcreteSingleton
/**
[[ClassComment]]

*/
[[typedef]] {

start_field: uniqueInstance
private static [[Singleton.name]] [[uniqueInstance.name]];
end_field: uniqueInstance
[[fields]]

private [[InstName]]() {
super();

}

start_method: GetInstance
public static [[Singleton.name]] [[name]]() {

if ([[uniqueInstance.name]] == null)
[[uniqueInstance.name]] = new [[InstName]]();

return [[uniqueInstance.name]];
}
end_method: GetInstance

[[methods]]
}
end_type: ConcreteSingleton
end_pattern: LazyInit

Figure 4.5: Example PGCL script for an lazy initialized singleton instance.

type within the definition of the type. For example, fields]] will generate all fields

(unless any field is overridden). A field may be overridden by creating a field block

78

Figure 4.6: Integration of the Pattern Generator with the Arc Framework.

using the start_field: <name> ... end_field: <name> where name is either

a field name or a role name. A roles name may be accessed using a template such as

[[Singleton.name]] and the current instance (specific implemented type bound to the

role being defined) may be accessed using InstName]]. Additional templates can be generated

as shown in 4.5 including class comments ([[ClassComment]]), type definition header

([[typedef]]), and all defined methods ([[methods]]). This example is only one of

the cues for a singleton, but the full definitions for each of the 16 design patterns (evaluated

in Chapter 10) are defined in Appendix A.

4.3.3 Integration into the Arc Framework

Figure 4.6 depicts the integration of the pattern generation components and their flow

of execution. This flow, the sequence of numbers encircled in green, is as follows. 1.) The

79

PatternGenTool provides the framework with an instance of the PatternGenCommand. 2.)

The PatternGenCommand provides an interface between the pattern generation process and

the ArcDb data model. It also executes the PatternGenerator. 3.) The PatternGenerator

controls the execution of the pattern generation process. 4.) This process begins by loading

two files for each pattern type to be created: the pattern-specific RBML and PGCL files. 5.)

The results of this process are the creation of the project directory and supporting files, and

the construction of pattern source code artifacts. These artifacts also have representation in

the Arc data model. Steps 4 and 5 of this process repeated for each pattern instance needed.

4.4 Conclusion

In this chapter, we detailed the underlying methods and tools used to extract

pattern data from software systems. Such data collection is not without its limitations.

Specifically, collecting enough raw design pattern instances for experimentation is difficult

and time-consuming. To alleviate this, we have detailed the development of a pattern

instance generation algorithm. Though this algorithm and its results are necessary during

experimentation, case studies require “wild” instances of patterns. To collect these “wild”

instances from actual software systems, we identified the design pattern detection tools which

will identify the raw instances. To improve the results of this and to cleanse the data set,

we detailed the pattern coalescence algorithm, which also provides the ability to construct

pattern chains. With these tools in place, we are capable of exploring the effects of grime on

pattern instances.

80

CHAPTER FIVE

METRICS, QUALITY AND TECHNICAL DEBT

If you can not measure it, you can not improve it.

–Lord Kelvin

5.1 Introduction

The desire to measure the quality of software has existed nearly as long as software

engineering [79]. The software industry, with the advent of better tools and processes,

has been placing a higher priority on the use of quality analysis and measurement tools.

The measurement of higher-level quantities such as Software Quality and Technical Debt

is, typically, based on lower-level static analysis and metric aggregation. Facilitating this

aggregation are models and approaches designed to operationalize the underlying quality

aspects or (-ilities). Operationalizing quality models requires the ability to efficiently collect

metrics measures and software issues in a general enough way that allows for a multitude of

tools to be used. Our solution to this problem is the development of the Arc Framework, as

detailed in Chapter 3.

In this chapter, we connect the components of the Arc Framework with the underlying

concepts of software metrics analysis, software quality analysis, and technical debt analysis.

These techniques form the basis of the organization of the sections of this chapter. The

first section details our approach to integrating software metrics collection into the Arc

Framework. The second section details our implementations of the Quamoco and SIG quality

measurement approaches and their integrations with the Arc Framework. The third section

details our approach to measuring technical debt and its integration with the Arc Framework.

Finally, we conclude with a summary and segue with the upcoming chapters concerning the

81

effects of design pattern grime on software quality and technical debt.

5.2 Metrics Analysis

A key component to an active software measurement effort is the identification of the

correct metrics by which one may answer the questions at hand. This idea is central to any

sophisticated software engineering enterprise in which one wishes to know what and where

improvement may be gained and forms the basis of the Goal-Question-Metric paradigm [28].

Through our use of the GQM, as described in Chapter 1, we are intimately familiar with

the necessity of identifying and utilizing the right metrics. Thus, this section is devoted to

providing a more in-depth insight into our method of software metrics measurement.

5.2.1 Metrics Model

A software metric provides a knowledge extraction rule for encoding some software

system aspects. These encoded aspects represented as either qualitative or quantitative

measured values of metrics. Metrics can individually, or in combination, act as surrogates

for quality attributes. Additionally, metrics provide system information useful in their own

right. This capability has led researchers and industry advocates, seeking to improve both

the software product and development process, to develop several metrics and measurement

tools. Having used these tools, we have found that most lack a sufficient extension capability

to meet our measurement needs. Thus, we have developed a metrics analysis system.

In developing this system, we divided the metrics along two axes: Direct/Derived and

Source/Abstraction, as depicted in Figure 5.1. This figure depicts the subdivision of the set

of all metrics into four subsets along the axes. The first axis indicates whether the Metric

directly measures the artifact under analysis or if it is a metric combining other metrics. The

second axis indicates whether the artifact measured is actual source code or some abstraction

contained within a model of the software system (i.e., UML or CFG). Understanding this

82

Figure 5.1: The axes of metrics division with examples shown.

division is better aided through a set of examples.

The following examples note several well-known software metrics and their location

within the quadrant. The first is an example of a Direct-Source metric is Source Lines

of Code(SLOC) [167], which is simply a count of the number of non-blank non-comment

lines within a source code file. An example of a Direct-Abstraction metric is McCabe’s

Cyclomatic Complexity [190], which is a measure of the complexity of a method/function

based on the control flow graph representation of a method’s structure. An example of a

Derived-Source metric would be Lines of Code per Class (LOCC), which is measured at the

project or system level and is the average number of lines of code per class in the system.

The following discusses the implementation of the metrics system.

Figure 5.2 depicts the metrics meta-model . The critical component of this model

83

Figure 5.2: Metrics measurement system model.

is the base class AbstractMetric, which provides the abstract method measure(...)

(containing the measurement logic). This method computes the Metric across a provided

Component and returns this computed value encapsulated in a Measure object. The returned

Measure is stored into the Arc data model by the Metric. Extending this base class is the

AbstractSourceMetric, which simply provides the ability to extract the underlying source

code for the provided Measurable item. The final main class, AbstractLOCMetric, provides

the base capabilities to measure lines of code metrics. The latter class uses the LoCProfile

and its manager to provide the language-specific values for the AbstractLOCMetric fields.

The final components of the meta-model link to the actual implementations. Each

implemented Metric provides (through Java™/Groovy annotations) a MetricDefinition,

84

which provides the metric with a name, a description, a primary handle (acronym) and

a set of MetricProperties. The MetricProperties further describe the Metric based on the

provided enumerations for the scale, scope, category, and type.

5.2.2 Implemented Metrics

The metrics analysis system currently includes implementations of several metrics

needed to conduct software quality measurement and to detect design pattern grime within

software systems. For the measurement of software quality (and specifically for normalizing

findings) we measure the following metrics: Number of Statements (NOS) [167], Source

Lines of Code (SLOC) [167], Number of Fields (NOF) [41, 48, 49], Number of Methods

(NOM) [163], and Number of Classes (NC) [100]. For use when detecting Modular Grime,

we have implemented the following metrics: Afferent Coupling (Ca) [182] and Efferent

Coupling (Ce) [182] at the class level. For use when detecting Class Grime, we have

implemented the following metrics: Tight Class Cohesion (TCC) [30] and Ratio of Cohesive

Interactions (RCI) [40] at the class level. Finally, for Organizational Grime detection, we

have implemented the following metrics: Instability (I) [182], Normalized Main Sequence

Distance (D’) [182], Common Closure (CC) and Common Reuse (CR) (both of these metrics

are defined in Section 9.6) at the pattern and package level.

5.2.3 Arc Framework Integration

Figure 5.3 depicts the metrics system integration into the Arc Framework and its flow of

execution. This flow follows two possible routes, the numbers encircled in green, as follows.

Both routes start by 1.) initializing the ArcContext and the reading of the ArcConfig during

Arc system initialization. 2.) The process then initializes the MetricsTool which provides

both the ArcMetricsProvider and the MetricsCommand. At this point, the execution can

fork. If the system is initializing the data model, then 3.a.) the ArcMetricsProvider will

construct the Arc metrics repository and the Metric definitions associated with it. 4.a.)

85

Figure 5.3: Integration of the metrics analysis system with the Arc Framework.

These values are then stored within the data model. If the system is in analysis mode, then

3.b.) the MetricsCommand extracts items from 4.b.) the Components section of the data

model and utilizes the MetricsEngine to calculate metrics. 5.) The MetricsEngine using the

information provided by a MetricsProfile, the ArcConfig, and the components to measure the

needed metrics. A MetricsCommand invokes a Metric and encapsulates the returned value as

a Measure. 6.) These Measures are then added to the data model by the MetricsCommand.

5.3 Quality Measurement

The field of Software Quality Assessment has, as described in Chapter 2, developed

several descriptive quality models (such as the ISO/IEC 25010 standard). Each of these

descriptive models comprises a set of characteristics and sub-characteristics. Though these

characteristics and sub-characteristics define quality concepts, they do not define a means of

86

assessment. Thus, model operationalization is a critical step in providing pragmatic solutions

that can be readily adopted by software development organizations in the industry. Further,

the deployment of operationalized quality models allows for continuous monitoring of the

quality of an organization’s software components.

The connection to higher levels of abstraction helps an organization’s decision-makers

assess potential economic impacts of breakdowns in quality in a holistic manner. To

facilitate an understanding of quality issues that affect decision-makers as well as developers,

we focused on the comparison between quality models [129]. This study led to our

implementation of the Quamoco quality modeling and assessment approach within the

SonarQube™ system. SonarQube™ś limitations required a shift towards the development

of the Arc Framework. In the following section, we describe, in detail, the Quamoco

architecture, method of assessment, and the integration within the Arc Framework.

5.3.1 Quamoco Quality Modeling

5.3.1.1 Quamoco Architecture As described in Chapter 3 we have developed a frame-

work to meet the needs of our research and more generally the requirements for software

measurement via an extensible architecture. Additionally, this architecture extends to incor-

porate the Quamoco quality modeling and assessment approach. This extension, depicted

in Figure 5.4, has four key components: the QuamocoTool, the QuamocoMetricProvider,

the QuamocoCommand, and the QuamocoConfig. The following describes the execution of

Quamoco by the Arc system.

Figure 5.4 depicts the execution of Quamoco as one of two distinct paths, as indicated

by the numbers encircled in green, as follows. Both paths start by 1.) the initialization of the

QuamocoTool. At this point, the execution is dependent on the current mode of operation

of the Arc system. 2.a.) During initialization mode, the QuamocoMetricProvider constructs

the required Metrics and containing MetricRepository for the Quamoco implementation used

87

Figure 5.4: Integration of the Quamoco quality measurement approach with the Arc
Framework.

in the QuamocoEngine. 3.a.) The QuamocoMetricProvider stores the MetricRepository and

contained Metrics in the data model.

The QuamocoCommand initializes and operates the QuamocoEngine during system

analysis mode. 3.b.) In this mode, a local QuamocoConfig configures the QuamocoEngine

used by the QuamocoCommand. 4.) The QuamocoCommand extracts Findings (as

provided by prior static analysis) and low-level measures (acquired during metrics analysis)

and provides these to the QuamocoEngine to facilitate quality analysis. 5.) The

QuamocoEngine, once configured and supplied with the necessary Findings and Measures,

then loads the applicable QualityModel and calculates the system quality (as described

in the following sections). 6.) Once the calculations are complete, Measures for each

quality attribute produced by the QuamocoEngine are then stored in the data model by

88

the QuamocoCommand.

5.3.1.2 Quamoco Processing The QuamocoEngine utilizes an external definition of a

quality model, encoded in XML (possibly across multiple files). These files are instances of

the Quamoco meta-model as defined by Wagner et al. [270,271]. The meta-model , although

useful for describing a quality model, provides far more detail than necessary to assess the

quality of a software system accurately. Therefore we extract a reduced-form representation

called the processing graph.

The processing graph is a directed acyclic graph distilled from a language-specific

combined quality model. The model is processed to form a graph composed of four types of

nodes, as depicted in Fig. 5.5. FactorNodes represent the higher-level abstractions related

to quality characteristics and sub-characteristics. MeasureNodes correspond to lower-level

issues (i.e. FindBugs rule ME ENUM FIELD SETTER which detects methods within a

Java™ enum, which sets the value of one of its fields1) applicable to entities found within

source code (e.g., types, methods or fields). Finding and Value Nodes correspond to static

analysis tool rules or metric values, respectively.

Each FactorNode has an attached Evaluator which handles the evaluation of afferent

(incoming) measures through finding the mean of the normalized value of the findings set or

value set, or through a weighted sum of afferent factors. Similarly, MeasureNodes each have

an attached Aggregator applicable to the type of aggregation necessary: union or intersection

for finding sets (propagated from attached finding nodes or other finding based measures)

or mean, min, or max for ValueNodes. FindingNodes and ValueNodes provide the ability to

collect either Findings (for named issues) or Values (for named metrics), respectively. Edges

connect these different nodes and provide the path for aggregation.

Edges between FactorNodes provide the necessary afferent weights (i.e., coefficients of

1http://findbugs.sourceforge.net/bugDescriptions.html#ME_ENUM_FIELD_SETTER

 http://findbugs.sourceforge.net/bugDescriptions.html#ME_ENUM_FIELD_SETTER

89

Quality

Factor Nodes

Measure Nodes

Finding and Value
Nodes

…

… …

……

……

Factor-Factor
Edges

Factor-Factor
Edges

Measure-Factor
Edges

Value/Finding
Edges

Figure 5.5: Representation of the processing graph.

source FactorNodes) used to aggregate the values at the destination FactorNode. Edges

between FactorNodes and MeasureNodes, which convey sets of findings, provide a means

to normalize the Finding set using an associated Normalization Measure and Range.

These edges also provide a linearly increasing or decreasing function used to constrain the

normalized value between 0.0 and 1.0.

5.3.1.3 Collecting Findings As shown in Figure 5.4 the QuamocoCommand extracts,

from the Arc data model, Findings and Measures. A set of Findings provided to each

FindingNode specific representing the Finding’s Rule in the QualityModel. Thus, each

provided Finding from the data model is added to the processing graph at a FindingNode

with a matching Rule name and Repository name.

5.3.1.4 Evaluation of Quality The Quamoco model evaluates the quality of a system

by aggregating the measures and issues affecting the system. These values form the lowest

level of a Quamoco model hierarchy and provide input to the measure level. Each Measure

refines another measure or is an input to a factor. A factor uses either the combination of

measures or factors, but not both to compute its value. This value is always in the range

90

[0.0, 1.0] and represents the presence of that Factor within the software system. On the

other hand, Measures pass up the hierarchy sets of Findings. Once these Findings reach a

factor, they must be normalized into a value in the range [0.0, 1.0] representing the presence,

in the system, of the underlying issue represented by the Finding.

Finding sets are normalized by summing a normalization measure (such as SLOC) across

the entities (i.e., a method, class, or file) where the Findings occur. This sum, reduced

by dividing by the system-level summation of the same Metric, acts as input to a linear

increasing/decreasing function. This function converts the cardinality of the Finding set to

a value in the range [0.0, 1.0] suitable for use by a Factor.

A Factor that is evaluated by a set of other Factors calculates its value using a weighted

sum. The weights, assigned to each incoming Factor, derive from that Factor’s assigned rank.

This derivation uses the Rank-Order Centroid method [27] and Swing approach [70], such

that the generated weights then sum to 1.0. The model stores the weights along the edges

to facilitate a simplified graph processing algorithm for quality evaluation.

Quality evaluation occurs through a simple recursive depth-first search based algorithm.

The algorithm starts at the sink Factor, “Quality”, then requests the values for each incoming

edge. This process continues recursively requesting the values of the source side node for each

incoming Factor. When the algorithm reaches a measure to factor edge, it either requests

the set of findings or the set of values from the source (depending on the type of Measure the

source side is). The recursion stops upon reaching either a FindingNode or ValueNode. The

values/finding sets are propagated back up the graph. During the propagation stage, the

algorithm aggregates these values/finding sets as they pass through each processing graph

node, stopping at the original start node.

Publishing Quality Information Once the processing graph has completed the evalu-

ation, the QuamocoCommand extracts and encapsulates high-level quality attribute values

91

Figure 5.6: Integration of the SIG Maintainability Model quality measurement approach
with the Arc Framework.

as Measures in the data model. Thus, the data model provides a simple means to access

quality information through a request for the specific Measure of concern.

5.3.2 SIG Maintainability Model

In addition to the Quamoco quality model we have also incorporated the SIG

Maintainability Model. This extension, depicted in Figure 5.6, has four key components: the

SigQualityTool, the SigQualityMetricProvider, the SigQualityCommand, and the SigCalData.

The following describes the execution of the SIG Model by the Arc system.

Figure 5.6 depicts the execution of the SIG Maintainability Model as one of two distinct

paths, as indicated by the numbers encircled in green, as follows. Both paths start by 1.) the

initialization of the SigQualityTool. At this point, the execution is dependent on the current

92

Figure 5.7: SIG Maintainability Model [268].

mode of operation of the Arc system. 2.a.) During initialization mode, the SigQualityMet-

ricProvider constructs the required Metrics and containing MetricRepository for the SIG

implementation used in the SigQualityEngine. 3.a.) The SigQualityMetricProvider stores

the MetricRepository and contained Metrics in the data model.

The SigQualityCommand initializes and operates the SigQualityEngine during system

analysis mode. 3.b.) In this mode, SigCalData configures the SigQualityEngine with

calibration data used by the SigQualityCommand. 4.) The SigQualityCommand executes

the SIG quality measures and provides these to the SigQualityEngine to facilitate quality

analysis. 5.) The SigQualityEngine, once configured and supplied with the Measures, then

performs the ratings and calculates system quality or produces calibration data (depending

on the type of analysis being conducted). 6.) Once the calculations are complete, the

Measures for each quality attribute produced by the SigQualityEngine are then stored in the

data model by the SigQualityEngine.

93

5.3.2.1 SIG Maintainability Model Quality Measurement The SIG Maintainability

Model, depicted in Figure 5.7, is comprised of four layers. The Quality Characteristic,

Maintainability, represents the target of quality assessment. With that in mind, it should

be noted that the Quality Characteristic and Quality SubCharacteristics are directly taken

from the ISO/IEC 25010 descriptive quality model. The premise underlying this model is

found throughout software quality modeling literature. It is the basis of each of the models

described herein. The idea is that quality characteristics cannot be directly measured [126].

Thus, we require surrogate measure(s) to represent the quality characteristic. We then

aggregate the values of these underlying factors or properties to provide a meaningful measure

of the quality characteristic of concern. Furthermore, Siavvas et al.have suggested that

identifying simpler models which are both limited in depth and have only a single measure

per property/factor is ideal [242]. From this perspective, the SIG Maintainability Model

seems ideal, at least for Maintainability, as each property is directly connected to a single

measure. The properties are defined as follows:

• Volume - The overall size of the source code of the software product. Size is determined

from the number of lines of Code per programming language normalized with industry-

averaged productivity factors for each programming language. Volume should be rated

on a scale that is independent of the type of software product.

• Duplication - The degree of duplication in the source code of the software product.

Duplication concerns the occurrence of identical fragments of source code in more than

one place in the product.

• Unit Complexity - The size of the source code unit (methods or functions) in terms

of the number lines of code.

• Unit Size - The degree of complexity in the units of source code.

94

• Unit Interfacing - The size of the interfaces of the units of the source code in terms

of interface parameter declarations

• Module Coupling - The coupling between modules (classes) in terms of the number

of incoming dependencies for the modules of the source code. The notion of module

corresponds to a grouping of related units.

• Component Balance - The product of system breakdown, which is a rating for the

number of top-level components (packages containing classes) in the system, and the

component size uniformity, which is a rating for the size distribution of those top-level

components. The notion of top-level components corresponds to the first subdivision

of the source code modules of a system into components, where a component is a

grouping of source code modules.

• Component Independence - A rating for the percentage for code in modules that

have no incoming dependencies from modules in other top-level components. The

choice of top-level components will affect which dependencies will be considered to be

from the outside of the top-level component.

• Component Entanglement - Indicates the percentage of communication between

top-level components in the system that are part of commonly recognized architecture

anti-patterns.

Having discussed the layers and underlying ideas, we now need to discuss how the

layers work together. One of the most challenging issues in software metrics is that nearly

all metrics are on different scales and have very different ranges of values. Thus, most

quality models transform the values from metrics in some fashion to a suitable range of

values consistent across the model. In the SIG Maintainability Model, the properties serve

this convenient purpose. The idea is that the Measures provide a raw value, which is then

95

rated and converted into an integer rating quality. In addition to providing the rating, the

properties also consider how they affect the related quality characteristics.

In Figure 5.7 these relationships are shown as either red or blue links between the

Properties and the Quality Sub-characteristics. The red links indicate that the property

negatively impacts the connected characteristic, and the blue links indicate that the property

positively affects the connected characteristic. For example, Analyzability is negatively

affected by Volume, Duplication, and Unit Size but is positively affected by Component

Balance. When considering these relationships, the rating approach needs to ensure that the

standard aggregation technique will continue to work. Thus, the interpretation for rating is

typically one in which properties that negatively affect quality will be rated lower for higher

values of the raw measure. In comparison, those which positively affect quality will be rated

higher for larger values of the raw measure. The SIG approach for aggregating Properties

into Quality Sub-characteristics is a simple weighted average of the rated values, as shown

in Table 5.1.

5.3.2.2 Rating Raw Values In the SIG Maintainability Model, all measures are rated

on a scale of 0 - 5 stars. The raw values are mapped to these ratings, using one of two

approaches. The first is direct rating, in which a calibrated rating table is used to assign a

rating of stars to the observed value. The second approach is a risk profile-based approach

which is a two-step approach. The first step uses the raw value to look up the risk category.

Where the risk category is one of: Low, Moderate, High, or Very High. In the second step,

each entity’s volume (i.e., lines of code) measured in the first step is summed for each risk

category. These sums are then divided by the system’s total volume to find the percentage

by volume for each risk category. These values form what is known as the risk profile for that

measure for the system. These values are used to find the rating by comparing against a table

of risk profiles linked to star ratings. The mapping of Property and associated Measures to

96

Table 5.1: Calculation of quality characteristics in the SIG Maintainability Model.

Characteristic Calculation

Analyzability
0.25 ∗ V olume+ 0.25 ∗Duplication+ 0.25 ∗ UnitSize

+ 0.25 ∗ ComponentBalance

Testability
0.33 ∗ V olume+ 0.33 ∗ UnitComplexity

+ 0.33 ∗ ComponentIndependence

Modularity

0.25 ∗ModuleCoupling + 0.25 ∗ ComponentBalance

+ 0.25 ∗ ComponentIndependence

+ 0.25 ∗ ComponentEntanglement

Modifiability
0.33 ∗Duplication+ 0.33 ∗ UnitComplexity

+ 0.33 ∗ModuleCoupling

Reusability 0.5 ∗ UnitSize+ 0.5 ∗ UnitInterfacing

Maintainability
0.2 ∗ Analyzability + 0.2 ∗ Testability + 0.2 ∗Modularity

+ 0.2 ∗Modifiability + 0.2 ∗Reusability

the type of rating used is shown in Table 5.2. In addition to this base implementation of the

SIG Maintainability Model we made an adjustment to how the rating is created. Instead of

simply mapping to a whole star, the rate will assign the whole star number. Additionaly,

it will linearly interpolate between the rating min and max values for the value to be rated

and add the decimal value to the assigned star value. In the case that the rating is 1-star,

interpolation is not performed as there often is no max value for 1-star ratings.

Let us consider an example for rating the Volume of a system that uses a direct rating

approach. First, we need a raw value for the Estimated Rebuild Value of the system. In this

example, we will consider the system to have an Estimated Rebuild Value of 31.5 man-years.

Next, we need to find the rating for this value. This transformation requires a calibrated

97

Table 5.2: SIG Maintainability Model Property and Measure rating types.

Property Measure Rating Type

Volume Estimated Rebuild Value Direct

Duplication Percent Redundant Code Direct

UnitSize Lines of Code per Unit Risk Profile

UnitComplexity McCabe’s Cyclomatic Complexity Risk Profile

UnitInterfacing Number of Parameters per Unit Risk Profile

Module Coupling Afferent Coupling Risk Profile

Component Balance Gini Coefficient Direct

Component Independence Cross-Component Dependency Direct

Component Entanglement Communication Violation Ratio Direct

Table 5.3: Example rating table for Volume

Rating Man-Years

99999 0 - 8

9999 8 - 30

999 30 - 80

99 80 - 160

9 >160

rating table that converts man-years (or even KLOC) to stars. For this example, we will use

Table 5.3. We then identify the correct rating for our raw value, which in the case of 31.5

man-years is a rating of 3 stars without interpolation and 3.03 with interpolation. Finally,

the rating is assigned to the value of Volume.

Next, let us consider an example for rating the UnitSize for a system. Before we start

98

Table 5.4: LOC per Unit to Risk Category mapping.

LOC per Unit Risk Category

0 - 15 Low Risk

15 - 30 Moderate Risk

30 - 60 High Risk

>60 Very High Risk

the process, we must understand that in the terminology of SIG, a unit is a method, even

though we are rating the property at the system level. Thus, the first step is to calculate

the raw value for Lines of Code per Unit for each unit in the system. For example, let us

suppose that we have a system composed of two classes, each with three methods and each

method having the given sizes in Table 5.5.

Using the values mapping of LOC per Unit to Risk Category in Table 5.4 we can

determine the risk category for each method, as shown in Table 5.5. Using this, we then

calculate the risk profile for the measure for the system. This calculation requires summing

the LOC for each risk category and dividing by the total system size. Thus, the risk profile

for this system is as follows: (LOW = 10.34%, MODERATE = 31.03%, HIGH = 58.62%,

VERY HIGH = 0.0%).

Next, we use this risk profile to rate the system for Unit Size. This rating requires us

to have a calibrated rating table, such as the one in Table 5.6. Using this table, we compare

the risk profile, finding the rating level for which the worst category for which a value exists

is not exceeded. In the case of the example system, this would be the HIGH risk category.

As a result, we have a Relative Volume Percentage of 58.62%, which exceeds the maximum

for all categories and places this system at a 1-star rating for Unit Size.

99

Table 5.5: Example system characteristics.

Class Method LOC per Unit Risk Category

ClassA

methodA 25 Moderate

methodB 50 High

methodC 10 Low

Class A Size 85 LOC

ClassB

methodD 5 LOC Low

methodE 35 LOC High

methodF 20 LOC Moderate

Class B Size 60 LOC

System Size 145 LOC

Table 5.6: Example risk profile rating table for Unit Size

Maximum Relative Volume

Rating Moderate High Very High

99999 30.0% 5.0% 0 %

9999 41.6% 18.2% 5.2%

999 50.0% 25.0% 7%

99 60.0% 30% 10%

9 – – –

5.3.2.3 SIG Maintainability Model Calibration As noted in Section 5.3.2.2, to rate the

raw measurements and provide values for the Properties in the SIG Maintainability Model,

we need calibrated rating tables. The SIG process for this is to evaluate an expert-curated

set of software projects. This set of projects should contain projects from a variety of

100

Table 5.7: Calibration distribution

Rating % of Projects

99999 5% of projects

9999 30% of projects

999 30% of projects

99 30% of projects

9 5% of projects

categories, sizes, and programming languages (if considering more than one) and have a

total volume of at least 10 million lines of code [268]. For this research, we utilized the

Qualitas.Class Corpus which is a curated collection of compiled open source Java™software

systems [256]. The Qualitas.Class Corpus is a derivative of the Qualitas Corpus [255]. The

projects in the corpus meet all of the requirements for calibration, with the exception of

multiple programming languages.

In calibrating our implementation of the SIG Maintainability Model, we randomly

selected 106 of the 111 systems from the corpus. We then collected the raw values for each

measure direct rating measure and the percentage relative volume values for each risk profile-

based rating measure. To then construct the rating tables, according to SIG’s documentation,

the values must follow the distribution defined in Table 5.7.

5.3.3 Selecting a Quality Model

Both the Quamoco and SIG models can evaluate a software system’s quality following

the ISO/IEC 25010 standard. However, both of these models have their pros and cons.

Specifically, the Quamoco approach does provide the ability to evaluate all characteristics of

the ISO 25010, while the SIG model is limited to Maintainability and its sub-characteristics.

Additionally, the SIG model is simpler and easier to interpret, while the Quamoco model is

101

complex. Finally, the Quamoco model was developed with engineers in mind, aggregating

detected issues, thereby facilitating the identification of exact locations in the software that

can be remediated. Alternatively, the SIG model is a metrics base model which gives a

more general sense of the quality issues but does not identify the same components of the

software with quality issues. Although, comparatively, from an engineer’s perspective, this

may suggest that the Quamoco model is preferred. Unfortunately, this is not the perspective

necessary for our research. We are concerned with understanding how design disharmonies

affect quality. This very fact suggests that the tools which would identify such issues are not

included in the model. Therefore a model such as Quamoco is less desirable, while a more

general metrics-based model is preferred. Thus, we have selected to use the SIG model over

the Quamoco model (or similar issues-based approaches, i.e., QATCH [242]).

5.4 Technical Debt Measurement

The growing concern for technical debt and its lasting effects, has prompted the

development of several methods of estimating a software system’s level of technical debt

[50, 59, 60, 99, 160, 161, 181, 203]. To date, there have been few studies which evaluate the

effect of issues considered technical debt on software quality indicators. This relationship is

key to understanding software disharmonies. First, though, we must have an approach to

estimate a system’s current level of technical debt.

5.4.1 Calculating Technical Debt

In prior work [103], we evaluated the connection between several technical debt

estimates and a known quality model. We found that of all the technical debt estimation

approaches evaluated, the CAST method [59, 60] was the most accurate (of those methods

evaluated) concerning the current definition of technical debt. However, there are potentially

more accurate methods available, such as the approach proposed by Nugroho et al. [203], at

102

Table 5.8: Values for models of TDE as proposed by Curtis, Sippidi, and Szynkarski [60,103].

Severity Model 1 Model 2 Model 3

Percent of High 50% 100% 100%

Findings Medium 25% 50% —

to be Fixed Low 10% — —

Time to Fix

High 1 hr 2.5 hrs 10% – 1 hr

20% – 2 hrs

40% – 4 hrs

15% – 6 hrs

10% – 8 hrs

5% – 16 hrs

Medium 1 hr 1 hr —

Low 1 hr — —

Cost to Fix All $75 $75 $75

the time of our prior study we did not have the empirical data nor was an implementation

of Nugroho et al.’s approach available. In the following subsections, we describe the

implementation of both the CAST and Nugroho approaches to technical debt estimation.

5.4.1.1 CAST TD Principal Estimation The CAST approach focuses on estimating the

technical debt principal (effectively the cost/effort to remediate the underlying issue) using

a static analysis based parameterized cost model. Three key parameters guide this model’s

operation: (i) Percent of Finding to be Fixed per Finding Severity Level, (ii) Hours to Fix

per Finding Severity Level, and (iii) The Cost per Hour per Finding. Parameters values are

prescribed by Curtis, Sippidi, and Szynkarski [60] defining the three models shown in Table

5.8.

103

The values of the parameters time to fix and cost to fix calculate a monetary value

based on the percentage of findings to fix. These values combine in the following equation

to estimate the Technical Debt principal using the values from Table 5.8 and the counts of

collected Findings:

TDE = (ΣHS ∗%HS ∗HSfix ∗HScost) (5.1)

+ (ΣMS ∗%MS ∗MSfix ∗MScost)

+ (ΣLS ∗%LS ∗ LSfix ∗ LScost)

Where ΣHS, ΣMS, and ΣLS are the counts of high severity, medium severity, and low

severity violations, respectively. The variables %HS, %MS, and %LS represent the

percentages of high, medium, and low severity violations intended to be fixed. The variables

HSfix, MSfix, and LSfix represent the average time (in hours) required to fix per instance of

each severity level. Finally, the variables HScost, MScost, and LScost represent the monetary

cost per hour to perform each fix.

5.4.1.2 Nugroho et al.’s Method to Estimate TD Principal and Interest Nugroho et

al. [203] developed an empirical model of Technical Debt Principal and Interest founded upon

the SIG Maintainability Model. Unlike the CAST approach, this method is directly related

to a validated ISO/IEC 25010 Quality Model for maintainability, the quality characteristic

most closely associated with Technical Debt [164]. To the best of our knowledge, there is no

other implementation of this approach. The following describes the methods of calculating

Technical Debt Principal and Interest and our implementation of this technique into the Arc

Framework.

Technical Debt Principal In this approach, TD Principal is considered to be the cost of

improving a software system to the ideal level [203]. The ideal level, in this case, would be

104

a system with a 5-star rating using the SIG Maintainability Model. Thus, the TD Principal

becomes the estimated Repair Effort needed to conduct the improvements. The Repair

Effort (RE) can be calculated as follows:

RE = RF ∗RV ∗RA

Where RF is the Rework Fraction, which estimates the percent change in system size needed

to reach the ideal level. This value is determined using the table provided by Nugroho et

al. (reproduced in Table 5.9 for the reader’s convenience). RF can then be estimated

by using the table to identify the column representing the current rating of the system’s

maintainability and then finding the row associated with the desired level to be achieved.

The intersecting cell then contains the appropriate RF . In our implementation of the SIG

Maintainability Model, we have applied a linear transform to allow for continuous values in

the range of 1.0 to 5.0 for quality ratings. Thus, the source value will not fall directly on

any one category. Therefore, to calculate the correct RF , a similar linear transformation is

applied, as follows:

RF =
Rt −Rs

Rt − bRsc
∗RF (bRsc, Rt)

Where Rt is the target rating value, Rs is the source rating value for Maintainability, and

RF (s, t) is the value of the cell in Table 5.9. RV is the Rebuild Value, which estimates the

effort (in man-months) required to reconstruct the system using a given technology. RV can

be calculated as follows:

RV = SS ∗ TF

Where SS is the System Size in KLOC and TF is the Technology Factor. The Technology

105

Table 5.9: Rework Fraction table [203].

Source

Target 9 99 999 9999 99999

9

99 60%

999 100% 40%

9999 135% 75% 35%

99999 175% 115% 75% 40%

Factor is a language-dependent productivity factor that provides a means to convert a line

of code into man-months. TF is derived from tables used for ”back-firing“ LOC to Function

Points and then converting Function Points to man-months based on the average function

points per month in the given language. In the case of Java™ (used in the studies describe in

Chapters 10 and 11) the value is 0.00136 [203]. Finally, RA is the Refactoring Adjustment,

a discounting factor applied for teams using advanced development tools to reduce required

repair effort. In the case of our system, we have selected to use the value a value of 0.10, as

suggested by Nugroho et al.

Technical Debt Interest In Nugroho et al.’s approach Technical Debt Interest is the

extra maintenance cost incurred due to Technical Debt. Thus, TD Interest, TDI, becomes

the difference between the maintenance effort at the current quality level, MEC , and the

maintenance effort at the ideal quality level (5-stars), MEI . Thus, TDI is calculated as

follows:

TDI = MEI −MEC

106

The Maintenance Effort in man-months, ME, can be calculated as follows:

ME =
MF ∗RV

QF

WhereRV is the Rebuild Value (calculated as it was for Repair Effort), the next component is

the Maintenance Fraction, MF , which is the yearly maintenance effort of the system. While

this value may be estimated from historical data, this is an incredibly challenging problem

when working with open-source systems. Nugroho et al. note that SIG estimates that 15%

of yearly changes to a system’s code are due to maintenance. Thus, in our implementation,

we have assumed this value. The last component in the calculation of ME is the Quality

Factor, QF , which accounts for the current quality level. The underlying assumption is that

as the quality level decreases the amount of maintenance effort increases. Thus, QF acts as

a penalty increasing the value of the maintenance effort for lower values of QualityLevel.

QF is calculated using the following formula:

QF = 2((QualityLevel−3)/2))

This formula results in a value of 2 for a current quality level of 5 stars. However for a value

of 1 for the current quality level, this results in a value of 0.5 which increases the maintenance

effort. Furthermore, the values that can be generated using the QF equation are in line with

prior empirical results from Bijlsma [32].

5.4.1.3 Selecting a Method Arguably both methods of calculating TD Principal are

based on the competing empirical analysis of systems. Both SIG and CAST collect data on

software systems and, using this information, have constructed models representing technical

debt. However, there are two readily apparent differences between these models. The first

is that Nugroho et al.’s approach is directly based upon the SIG Maintainability Model

107

and hence comes closer to accepted definitions of technical debt. Though this model is

perhaps more accurate in evaluating the level of technical debt a system has, it does little

for the engineer tasked with remediating the technical debt and for managers needing to

make decisions regarding technical debt issues to include in upcoming releases. That said, it

does provide the ability to monitor the technical debt level and to make high-level decisions

regarding project direction. On the other hand, the CAST method utilizes well-known issues

and can be directly traced back to individual items and their location in code. Thus, decisions

at the code level made by team leads and engineers regarding planning and system health

can be made if the effect of those items is known. For this research, as existing tools such as

PMD and SpotBugs do not identify grime directly, the CAST method would not necessarily

provide the best method for evaluating grime’s effect on technical debt. This is similar to

the reasoning used in selecting a quality measurement approach.

5.4.2 Technical Debt Measurement Architecture

The evaluation of a Software System’s Quality and Technical Debt is one of the primary

motivations of the Arc Framework. Thus, the Arc Framework integrates the above method

of technical debt estimation. This integration and its flow of execution are depicted in

Figure 5.8. The execution flow, the numbers encircled in green, follows two possible paths.

Both paths begin with 1.) the initialization of the Arc system which then provides an

ArcContext initialized with a ArcConfig provided via an ArcConfigProvider. 2.) Next, the

system initializes the TechDebtTool. The TechDebtTool provides two major components:

the TechDebtMetricProvider and the TechDebtCommand. At this point, the execution path

forks and depends upon the operational mode of the Arc system.

When the Arc system in is the data model initialization mode 3.a.) the TechDebtMet-

ricProvider constructs the MetricRepository and Metrics and, 4.a.) adds them to the data

model. When the Arc system is in the system analysis mode 3.b.), the TechDebtCommand

108

Figure 5.8: Integration of technical debt measurement system with the Arc Framework.

controls the technical debt analysis. 4.b.) This analysis extracts static analysis findings and

measures for the system under analysis and passes this information to the TechDebtEngine.

5.) The TechDebtEngine uses these findings, measures, and ArcConfig information to

calculate the system’s technical debt value. 6.) The calculated value is returned to the

TechDebtCommand, wherein it is encapsulated into a Measure and added to the data model.

5.5 Conclusion

This chapter provides the details concerning the measurement of both software quality

and technical debt necessary for the experiments and case studies found in Chapters 10

through 11. This chapter further develops the reasoning for the construction of the Arc

Framework, while also describing the integration of the metrics, quality, and technical debt

109

analysis framework components. These components along with those defined in Chapters 3,

4, 6, and 7 implement the central ideas of the method presented in Chapter 8 which lays out

this research’s guiding principles and processes.

110

CHAPTER SIX

SOFTWARE INJECTION

Program testing can be used to show the presence of bugs, but never to show

their absence!

–Edsger Dijkstra

6.1 Introduction

Currently, design disharmony research lacks (excluding code smells and antipatterns)

automated identification and verification techniques. Without such techniques, the ability

to cultivate design disharmony datasets is quite limited. These limitations, in turn, have

slowed the progress in evaluating the effects that grime has on quality and technical

debt and restricting research to observational studies. Such studies reduce the scope of

analysis and preclude the ability to evaluate causal relationships. Thus, to introduce causal

analysis, through experimentation, this Chapter describes a framework for the injection of

design disharmonies. Injection allows for the controlled introduction of design disharmonies

instances into software artifacts, thereby removing the original limitations.

This Chapter is organized as follows. Section 6.2 describes the architecture of the

process governing our software injection system. Section 6.3 provides definitions for the

injection of design pattern grime into design pattern instances. Section 6.4 details potential

applications beyond design pattern grime for this framework. Finally, Section 6.5 concludes

this chapter.

111

6.2 Software Injection Architecture

Software Injection is a method to include entities of study through a software system

transformation. These transformations occur through the serial application of a set of

operators. Each operator either modifying or creating artifacts to exemplify affliction

with the disharmony injected. The Software Injection meta-model, depicted in Figure 6.1,

contains the process’ necessary components and basic architecture. The following subsections

describe this architecture.

6.2.1 Software Injection Metamodel

The meta-model consists of two main sections: (i) the components on the left that

enact the operators described by (ii) the components on the right, and the InjectionContext

separates both sections. The section on the right describes the transformation operators

necessary to effect the injection of a disharmony. The primary injection component,

the interface SourceTransform, provides the base interface and logic from which concrete

realizations derive. These realizations provide the necessary logic to inject a disharmony

into both the data model and source code artifacts. The SourceTransform hierarchy forms

the basis of the Command pattern implemented.

The base class, AbstractSourceTransform, provides common SourceTransform function-

ality. Many of these operations involve simple update operations maintaining consistency

between source files and the data model. The AbstractSourceTransform also provides an

association with an InjectionContext, to provide access to the components managing the

injection process. Finally, the AbstractSourceTransform contains a set of Condition(s)

used to validate the current state of the model permits the transform operator execution.

Beyond these basic operations and components, the AbstractSourceTransform has two

specializations.

112

Figure 6.1: Software Injection meta-model.

These specializations include: (i) BasicSourceTransform and (ii) CompositeSource-

Transform. The BasicSourceTransform is the base class for transforms, providing only basic

source transformation operations. Transformation operations include, but are not limited

to, the creation of a file, addition of a field, and addition of a constructor. This is in contrast

to the CompositeSourceTransform. CompositeSourceTransform extensions provide both the

base logic for generating code and the ability to divide their operation into combinations of

other transforms. An example of such a transform is CreateEncapsulatedField, which creates

a new Field and provides a getter and setter method for that field. The remaining classes in

the meta-model define the operational components for the injection process.

The main component of the operational section of the meta-model is the TransformIn-

voker class. It provides the logic to control the correct application of transforms. As each

SourceTransform is constructed it is stored until processing begins, via a concurrent queue,

in the TransformInvoker controlled by the InjectionController. The InjectionController also

controls, for each active file, a set of FileOperations. The FileOperations class provides the

logic to handle SourceTransform required the file operations (includes basic file I/O and the

113

Figure 6.2: High-level overview of the software injection process.

injection of new file content). Figure 6.2 depicts the process of combining these components,

which the following subsection describes.

6.2.2 The Injection Process

The Injection Process uses a combined model and direct source code manipulation

approach, as opposed to a similar concept using bytecode manipulation developed by Dale

[61], as depicted in Figure 6.2. This figure depicts the flow of execution, numbers encircled

in green, as follows: 1.) Initially, the process extracts the data model components and their

associated source code locations from the data model and file system. 2.) The data, extracted

into a hierarchical model, via the InjectionController acts as input to the injection strategies.

3.) As each InjectionStrategy executes, it constructs SourceTransforms, which are passed

to the TransformInvoker and added to its transform queue. 4.) Each queued transform

114

executes to construct injection operators. 5.) These operators modify or construct data

model elements, and then execute operations within the FileOperations entities, 6.) resulting

in modified source code.

The novelty of the process described here is in the introduction of artifacts such as

code smells, antipatterns, design pattern grime, and even design patterns using defined

and validated injection strategies that control the injection process. This process modifies

source code using a model-driven approach independent of any language-specific features.

Furthermore, the ability to generate source code escapes the problem of simulation, common

to this type of approach. Finally, this approach facilitates the ability to inspect the generated

code to validate the production of these entities, a process that bytecode injection prohibits.

Key to our approach is the SourceInjector, as depicted in Figure 6.3

The SourceInjector encodes the logic necessary to generate the sequence of transforms

needed to inject one or more types of disharmonies into one or more software components,

what we term Injection Strategies. Currently, we have developed strategies for modular grime

(c.f. 6.3.1), class grime (c.f. 6.3.2), organizational grime (c.f. 6.3.3), and a NullInjector

for the case of an unknown type. These injectors’ base class, GrimeInjector, contains

the common operations for each of its subtypes. Subtypes of this class are generated

and provided to the InjectionController via the GrimeInjectorFactory. Finally, the three

interfaces ClassGrimeTypes, OrgGrimeTypes, and ModularGrimeTypes are used simply to

hold constants representing the names of known subtypes of the respective major-type of

grime.

6.2.3 Integration into the Arc Framework

The injection process, described in this Chapter is a necessary component of the

experimentation method defined in Chapter 8. This method of software injection, to be

useful, must be integrated into the Arc Framework alongside the methods and tools we

115

Figure 6.3: Software Injection Injectors.

described in Chapter 5. Figure 6.4 depicts the integration of Software Injection into the Arc

framework.

Figure 6.4 shows the Software Injection execution path as the numbers encircled in

green. This path is as follows: 1.) During system initialization the SourceInjectorTool

is initialized to provide the Arc framework with the InjectorCommand. 2.) The

InjectorCommand controls the execution of the SourceInject tool. The InjectorCommand

116

Figure 6.4: Source Injector integration with the Arc Framework.

also provides the SourceInjector with data from the data model 3.) The SourceInjector tool

executes the source injection process according to selected detection strategies. 4.) The

SourceInjector, via the InjectorCommand, extracts necessary data from the data model and

reads in information from the source files in the project root. 5.) As the SourceInjector

executes, it modifies both the physical files in the project root and the components in the

data model. That is, the InjectorCommand adds basic artifacts that are created and added

to the data model, along with, Findings for any added disharmonies.

117

Algorithm 6.1: Modular Grime Injection Strategy

1: procedure Inject(persist, extern, efferent)
2: src← ∅
3: dest← ∅
4: rel← ∅
5: if extern then
6: if efferent then
7: src← SelectOrCreateExternClass()
8: dest← SelectPatternClass()
9: else

10: src← SelectPatternClass()
11: dest← SelectOrCreateExternClass()
12: end if
13: else
14: src, dest← Select2PatternClasses()
15: end if
16: if persist then
17: rel← SelectPersistentRelationship()
18: else
19: rel← SelectTempRelationship()
20: end if
21: CreateRelationship(src, dest, rel)
22: end procedure

6.3 Design Pattern Grime Injection

This section details the injection strategies defined for each of the three types of design

pattern grime: Modular Grime, Class Grime, and Organizational Grime.

6.3.1 Modular Grime

This section describes the basic strategy for injecting modular grime into an existing

software system. This strategy, defined by the pseudocode in Algorithm 6.1, has three control

parameters. These parameters correspond to the components defining the modular grime

taxonomy [234]). These components are the strength, scope, and direction of the grime and

exist in the strategy as the Boolean flags persist., extern, and efferent, respectively.

118

Table 6.1: Value table for the Modular Grime Injection Strategy parameters. T indicates
true, F indicates false, and – indicates N/A

Grime
Parameters

persist extern efferent

PIG T F –

TIG F F –

PEEG T T T

TEEG F T T

PEAG T T F

TEAG F T F

Parameter combinations specify the known types of modular grime, as shown in Table

6.1. Specifically, this works by controlling the algorithm using the following interpretations

of each variable’s possible values. When persist is true, this indicates a form of persistent

modular grime, and, otherwise, indicates a form of temporary modular grime. When extern

is true, this indicates a form of external modular grime, and, otherwise, indicates a form of

internal modular grime. When efferent is true, this indicates a form of efferent modular

grime, and, otherwise, indicates a form of afferent modular grime. With this understanding

in mind, the following describes the inner workings of this strategy.

The injection strategy, based upon the definition of Modular Grime from Chapter

9, generates grime inducing relationships using a set of three variables. These variables

are as follows: (i) src, the source side of the grime inducing relationship, (ii) dest, the

destination side of the grime inducing relationship, and (iii) rel, the type of the grime

inducing relationship. Initially, the strategy sets the values for src, dest, and rel to be null.

The variable value selection corresponds to the grime type specified by the input parameters.

The following describes the assignment process for each of the variables.

119

Modular Grime injection variable assignment considers the following cases. If both

extern and efferent are true, then the value of the src will be the selection of some class

external to the pattern instance, and dest selects from the set of pattern class. If extern is

true and efferent is false, the opposite selection occurs. If extern is not true, both src and

dest are assigned pattern classes.

Once both src and dest are assigned, the algorithm selects the relationship type. The

strategy determines relationship type, as follows. If persist is true, then the value of rel is set

to be persistent (one of generalization, realization, or a form of association), and otherwise is

set to be temporary (a form of dependency). Finally, once selected, the variables src, dest,

and rel act as input to the respective relationship constructing transform, which is created

and passed to the TransformInvoker.

6.3.2 Class Grime

This section details the basic strategy for injecting class grime into an existing software

system. This strategy, defined by the pseudocode in Algorithm 6.2, has three parameters.

These parameters correspond to the components defining the class grime taxonomy. These

components are the strength, the scope, and the direction components of the taxonomy (c.f.

9.5) and exist in the strategy as the Boolean flags direct, internal, and pair, respectively.

Parameter combinations specify the known types of class grime, as shown in Table 6.2.

Specifically, this works by controlling the algorithm using the following interpretations of

each variable’s possible values. When direct is true, this indicates a form of direct class

grime, and, otherwise, indicates a form of indirect class grime. When internal is true, this

indicates a form of internal class grime, and, otherwise, indicates a form of external class

grime. When pair is true, this indicates a form of pair class grime, and, otherwise, indicates

a form of singular class grime. With this understanding in mind, the following describes the

inner workings of this strategy.

120

Algorithm 6.2: Class Grime Injection Strategy

1: procedure Inject(direct, internal, pair)
2: clazz ← SelectPatternClass()
3: field← SelectField(clazz)
4: method1← ∅
5: method2← ∅
6: if internal then
7: method1← SelectPatternMethod()
8: else
9: method1← SelectOrCreateMethod()

10: end if
11: if pair then
12: method2← SelectOrCreateMethod()
13: end if
14: if direct then
15: AddFieldUse(method1, field)
16: if pair then
17: AddFieldUse(method2, field)
18: end if
19: else
20: mutator ← SelectOrCreateMutator(field)
21: AddMethodCall(method1, mutator)
22: if pair then
23: AddMethodCall(method2, mutator)
24: end if
25: end if
26: end procedure

The injection strategy, based upon the definition of Class Grime from Chapter 9,

generates grime inducing field and method use relationships using a set of four variables.

These variables are as follows: (i) clazz, the class injected with grime, (ii) field, the field to

be connected to a method forming the grime relationship, (iii) method1, and (iv) method2,

the methods which will form the source side of the relationship. Initially, the strategy

assigns to clazz the value of a randomly selected pattern instance class and assigns to field

a randomly selected field from within that class. In the case that no available field exists,

the strategy creates one. The strategy then sets the value of method1 and method2 to null.

121

Table 6.2: Value table for the Class Grime Injection Strategy parameters. T indicates true
and F indicates false.

Grime
Parameters

direct internal pair

DIPG T T T

DISG T T F

DEPG T F T

DESG T F F

IIPG F T T

IISG F T F

IEPG F F T

IESG F F F

The variable value selection corresponds to the grime type specified by the input parameters.

The following describes the assignment process for each of these variables.

Class Grime injection variable assignment considers the following cases. If internal is

true, then method1 is set to a method within the selected class matching a pattern feature

role. Otherwise, the strategy assigns method1 to any other method or a newly created

method. If pair is true, then the strategy assigns method2 to any method or a newly

created method. If direct is true, then the strategy constructs a transform to create a field

use relationship between the field and method1 and adds it to the TransformInvoker. If

both direct and pair are true, then the strategy constructs a transform to create a field

use relationship between field and method2 and adds it to the TransformInvoker. If direct

is false, then the strategy constructs an indirect relationship through a selected or created

mutator of the field, rather than constructing direct relationships.

122

Algorithm 6.3: Package Organizational Grime Injection Strategy

1: procedure Inject(internal, closure)
2: pkg ← SelectPatternNamespace()
3: type← ∅, rel← ∅, dest← ∅, other ← ∅
4: if internal then
5: type← SelectPatternClass(pkg)
6: else
7: type← selectOrCreateExternalClass(pkg)
8: end if
9: rel← SelectRelationship()

10: if closure then
11: other ← SelectUnreachableNamespace(pkg)
12: dest← SelectExternalClass(other)
13: else
14: other ← SelectNamespace()
15: dest← SelectExternalClass(other)
16: end if
17: if other and dest then
18: CreateRelationship(type, dest, rel)
19: end if
20: end procedure

6.3.3 Organizational Grime

This section details the basic strategies for injecting organizational grime into an

existing software system. Unlike both Class and Modular Grime, Organizational Grime

subdivides into two distinct types: Package and Modular Organizational Grime.

6.3.3.1 Package Organizational Grime This section details the strategy for injecting

package organizational grime into an existing software system. This strategy, defined by

the pseudocode in Algorithm 6.3, has two parameters corresponding the components of the

taxonomy (c.f. 9.6) and are identified as the Boolean flags internal and closure.

Parameter combinations specify the known types of package organizational grime, as

shown in Table 6.3. Specifically, this works by controlling the algorithm using the following

interpretations of each variable’s possible values. When intern is true, then this indicates

123

Table 6.3: Value table for the Package Organizational Grime Injection Strategy parameters.
T indicates true and F indicates false.

Grime
Parameters

internal closure

PICG T T

PIRG T F

PECG F T

PERG F F

a form of internal package organizational grime, and when false, this indicates a form of

external package organizational grime. When closure is true, this indicates a form of

closure package organizational grime, and, otherwise, indicates a form of reuse package

organizational grime. The following describes the inner workings of this strategy.

The injection strategy uses the definition of Package Organizational Grime from

Chapter 9. This strategy focuses on the creation of grime inducing relationships using

the following five control variables: (i) pkg, the namespace containing elements of the

pattern instance, (ii) type, the type selected from the pattern instance within the namespace

referenced by pkg, (iii) rel, the relationship type to be injected, (iv) dest, the type

representing the destination end of the relationship injected, and (v) other, the other

namespace containing the type referenced by dest. Initially, the strategy assigns pkg to

a randomly selected namespace from those containing elements of the pattern instance and

the remaining four variables to null. The control variable values correspond to the values of

the three input parameters.

This correspondence is a direct connection between the values specified in Table 6.3 to

the definition of Package Organizational Grime; the strategy considers the following cases.

If internal is true, then the strategy assigns type to a pattern instance class within the

124

namespace referenced by pkg. Otherwise, the strategy assigns type to a class internal to the

namespace or one created internal to the namespace but external to the pattern instance.

The strategy then selects the type of relationship to create and assigns it to the variable rel.

The strategy then selects the destination end of the relationship. If closure is true, then the

strategy assigns to other a namespace currently unreachable from the namespace referenced

by pkg and assigns to dest a type (external to the current pattern instance) found within the

namespace referenced by other. Otherwise, the strategy assigns to other any namespace and

assigns to dest a type (external to the current pattern instance) found within the namespace

referenced by other. Finally, if both other and dest have a value set, the strategy constructs

a transform to create a relationship between type and dest with the type or rel and adds it

to the TransformInvoker.

6.3.3.2 Modular Organizational Grime This section details the strategy for injecting

modular organizational grime into an existing software system. This strategy, defined by

the pseudocode in Algorithm 6.4, has in three parameters corresponding to the components

of the taxonomy (c.f. 9.6) and identified by the Boolean flags persistent, internal, and

cyclical, respectively.

Parameter combinations specify the known types of modular organizational grime,

as shown in Table 6.4. Specifically, this works by controlling the algorithm using the

following interpretations of each variable’s possible values. When persist is true, this

indicates a form of persistent modular organizational grime, and, otherwise, indicates a

form of temporary organizational modular grime. When internal is true, this indicates a

form of internal modular organizational grime, and, otherwise, indicates a form of external

modular organizational grime. When cyclical is true, this indicates a form of cyclical modular

organizational grime, and, otherwise, indicates a form of unstable modular organizational

grime. With this understanding in mind, the following describes the inner workings of this

125

Algorithm 6.4: Modular Organizational Grime Injection Strategy

1: procedure Inject(persistent, internal, cyclical)
2: pkgs← PatternNamespaces()
3: ns1 ← ∅, ns2 ← ∅
4: if internal then
5: if |pkgs| > 1 then
6: (ns1, ns2)← SelectNamespaces(pkgs)
7: else
8: ns1 ← SelectNamespace(pkgs)
9: (ns1, ns2)← SplitNamespace(ns1)

10: end if
11: else
12: ns1 ← SelectPatternNamespace()
13: ns2 ← SelectOrCreateExternNamespace()
14: end if
15: if persistent then
16: rel← SelectPersistentRelationship()
17: else
18: rel← SelectTempRelationship()
19: end if
20: if cyclical then
21: CreateCyclicalDep(ns1, ns2, rel)
22: else
23: AddInstabilitiy(ns1, ns2, rel)
24: end if
25: end procedure

strategy.

The injection strategy, based upon the definition of Modular Organizational Grime

from Chapter 9, generates grime inducing relationships using a set of three variables. These

variables are as follows: (i) pkgs, namespaces containing elements of the pattern instance, (ii)

ns1, the source-side namespace of an injected grime forming dependency, (iii) ns2, destination

side namespace of an injected grime forming dependency. Initially, the strategy assigns to

pkgs the set of namespaces containing the pattern instance’s elements. The variable selection

corresponds to the grime type specified by the input parameters. The following describes

the assignment process for each of these variables.

126

Table 6.4: Value table for the Modular Organizational Grime Injection Strategy parameters.
T indicates true and F indicates false.

Grime
Parameters

persistent internal cyclical

MPICG T T T

MPIUG T T F

MPECG T F T

MPEUG T F F

MTICG F T T

MTIUG F T F

MTECG F F T

MTEUG F F F

Modular Organizational Grime injection variable assignment considers the following

cases. If internal is true and the size of pkgs is greater than 1, then the strategy assigns

both ns1 and ns2 to randomly selected members of pkgs. In the case that the size of pkgs is

1, then the strategy assigns both ns1 and ns2 to the namespaces created through a split of

the namespace currently referenced by ns1. Otherwise, if internal is false, then the strategy

assigns to ns1 any one of the pattern instance containing namespaces, and to ns2 an external

namespace if one exists (otherwise it creates one). If persistent is true, then the strategy

assigns to rel a persistent relationship type (one of generalization, realization, or a form of

association). Otherwise, the strategy assigns to rel a dependency relationship type. Finally,

if cyclical is true, then a set of transforms are added to the TransformInvoker which will

create relationships between ns1 and ns2 of type rel. These transforms result in the formation

of a cyclical relationship between the namespaces represented by ns1 and ns2. On the other

hand, if cyclical is false, then the set of transforms are added to the TransformInvoker create

127

relationships between ns1 and ns2 of type rel, such that the instability of ns1 increases.

6.4 Applications

This Chapter describes a technique to inject design disharmonies into existing source

code programmatically. Within this research, this approach facilitates the evaluation of the

effects of design pattern grime through experimentation. Although this technique is effective

in accomplishing its objective, it is capable of much more. In the following subsections, we

describe three potential applications of software injection.

6.4.1 Application to Experimentation

The use of injection allows for the controlled creation of design disharmonies through

the creation of injection strategies. Furthermore, injection strategies allow the injection

of any number or type of software entity into software artifacts. This capability, when

combined with proper experimental design and parameterization, provides the ability to

evaluate the various effects of the injected entities on the system. This combination

enhances experimentation capability, as injection allows for randomization in assignment

and selection of treatment groups, thus providing a means to evaluate causal relationships.

Beyond traditional experimentation, software injection applies to case studies and single-case

mechanism experiments from Design Science [275].

6.4.2 Application to Benchmarking

Injection strategies also allow the development of proper benchmarking datasets such as

code smell, antipattern, and design rule violation detectors. Beyond just a simple true/false

identification, injection strategies will allow for the fine-tuning and calibration of such tools.

Fine-tuning and calibration allow for the possibility of identifying a range of detection for

each design disharmony a tool supports. Improving tools in this manner allows for the

128

identification and evaluation of the systematic error associated with these tools. Additionally,

injection strategies can provide tools with the capability to detect rare or theoretical design

disharmonies.

6.4.3 Application to Design Patterns

Beyond simply injecting disharmonies, injection strategies can inject more complicated

and more useful concepts as well. For instance, as a part of the experimentation process,

rather than requiring the software product studied to have existing instances of each type

of design pattern, we could inject the required patterns into the system as needed. These

injected design pattern instances provide a base for additional disharmony injection or other

experiments.

6.5 Conclusion

This Chapter presented current work on the software injection process and framework.

We presented the architecture, meta-model, and integration with the Arc framework

underlying this approach. Furthermore, we defined the concept of injection strategy, which

provides an algorithmic approach to inserting design disharmonies into the software. Finally,

we presented several potential applications for this technique, which our future work will

explore.

129

CHAPTER SEVEN

DESIGN PATTERN GRIME DETECTION

Up to a point, it is better to just let the snags [bugs] be there than to spend such

time in design that there are none.

–Alan M. Turing

7.1 Introduction

Design pattern grime research, up to now, has been stagnated due to a limitation of

manual identification processes. This has further limited our ability to understand the effects

of grime within the context of software systems, and has become a significant issue worthy of

study in and of itself. Similarly, research into other design disharmonies, such as code smells

and antipatterns, has also suffered a similar problem. For these disharmonies the problem

of automated detection has been addressed through a variety of methods [82,83,97,110,111,

113,135,139–142,144,165,166,171,172,179,189,193,194,196–198,212,217,229,232,260,262,

265, 266, 272, 277]. This chapter details efforts to address this problem for design pattern

grime through the adoption of techniques known to work for other design disharmonies.

These approaches use the properties and measures of the components of a system

understudy to effectively construct a hierarchy of filters used to identify artifacts afflicted

with design disharmonies. Our approach implements a similar approach to facilitate the

detection of grime.

This chapter is organized as follows. Section 7.2 describes how the automated detection

of different forms of grime. Section 7.3 describes the integration of the detection system into

the Arc Framework. Finally, Section 7.4 concludes this chapter.

130

7.2 Detection Framework

Automated grime detection strategies are directly based upon the definitions defined

in Chapter 9. Using these taxonmies we have created a detection strategy per major type

of grime. Each of these strategies filters software artifacts to identify the occurrence of a

specific subtype of grime. The following subsections describe the detections starting with

Modular Grime.

7.2.1 Modular Grime Detection

The detection strategy for Modular Grime is depicted in Algorithm 7.1. This strategy

takes in a single parameter, pattern, representing a design pattern instance. This strategy

has two basic phases. The first (lines 2 – 7) gathers the necessary information needed to

determine if grime exists. The second is the actual detection phase (lines 8 – 37).

Phase 1: Data Gathering Phase The first major step in the data gathering phase is

constructing the underlying graph using the call to ConstructGraph (line 3). This step

creates a directed graph where the nodes are types comprising the pattern instance and any

other type in the system directly coupled to the pattern instance types.

Next, the function markInternalOrExternal (line 4) considers each type (node)

in the graph to determine whether it is internal or external to the pattern instance. Again,

this is a trivial process that determines if the particular type is part of a RoleBinding in the

provided pattern instance or not.

Next, the function martTemporaryOrPersistent (line 5) checks all of the edges

within the graph. This is a trivial step as each edge maintains the type of coupling it

represents. Furthermore, the graph should allow for both self-loops (a node has a connection

to itself) and the ability to have type information for the edge to allow multiple edges between

131

Algorithm 7.1: Modular Grime Detection Strategy

1: procedure Detect(pattern)
2: findings← ∅
3: graph← ConstructGraph(pattern)
4: markInternalOrExternal(graph,pattern)
5: markTemporaryOrPersistent(graph)
6: markValidOrInvalid(graph,pattern)
7: calculateDeltas(graph)
8: for all e ∈ edges(graph) do
9: if invalid(e) then

10: src← source(e)
11: dest← dest(e)
12: if internal(src) ∧ internal(dest) then
13: if persistent(e) then
14: findings← “PIG”
15: else
16: findings← “TIG”
17: end if
18: else if internal(src) ∨ internal(dest) then
19: if persistent(e) then
20: if increases(e, ‘Ca′) then
21: findings← “PEAG”
22: end if
23: if increases(e, ‘Ce′) then
24: findings← “PEEG”
25: end if
26: else
27: if increases(e, ‘Ca′) then
28: findings← “TEAG”
29: end if
30: if increases(e, ‘Ce′) then
31: findings← “TEEG”
32: end if
33: end if
34: end if
35: end if
36: end for
37: return findings
38: end procedure

132

nodes. At that point, determining whether an edge is temporary or persistent is a simple

table lookup or similar query.

Next, the function markValidOrInvalid (line 6) evaluates each edge to determine

if it is valid/invalid according to the RBML specification for the pattern. Again, this should

be a trivial implementation based on a simple query to the RBML implementation. Each of

these marking functions sets a property in the corresponding structure evaluated.

Finally, the constructed and marked graph is used to calculate the metrics necessary for

evaluating modular grime. In this case, we are concerned with Afferent Coupling (Ca), which

is the count of the number of incoming couplings of a class, and Efferent Coupling (Ce), which

is a count of the number of out-going couplings of a class [183]. The calculateDeltas

function (line 7) calculates both metrics for each type when considering the exclusion of each

coupling in which the class takes part. The information gathered in this phase is used in the

detection phase to identify any occurrences of grime.

Phase 2: Detection Phase This phase iterates across all edges in the graph and

evaluates the properties extracted during the data gathering phase. Each property gathered

is evaluated using the predicates found within lines 9 – 30. The predicate invalid(e) returns

true if the edge was marked as invalid and false otherwise. The predicate internal(n) returns

true if the type n was marked as internal to the pattern and false otherwise. The predicate

persistent(e) returns true if the edge e represents a persistent type of coupling between the

types. Finally, the predicate increases(e, str) returns true if the provided edge creates a

positive change to the named metric. Additionally, we can extract the source or destination

types from the directed edge using the source(e) and dest(e) functions, respectively. If an

edge meets the criteria indicating grime, that type of grime is added to the finding list.

After all edges in the graph are processed, this list is returned from the detection strategy.

133

Algorithm 7.2: Class Grime Detection Strategy

1: procedure Detect(pattern)
2: findings← ∅
3: for all t ∈ types(pattern) do
4: graph← constructGraph(t)
5: markMethods(graph,pattern)
6: methodPairs← markMethodPairs(graph)
7: calculateDeltas(graph)
8: DetectPairGrime(methodPairs, findings)
9: DetectSingularGrime(graph, findings)

10: end for
11: return findings
12: end procedure

7.2.2 Class Grime Detection

The detection strategy for Class Grime is depicted in Algorithms 7.2 – 7.4. Similar

to the Modular Grime detection strategy, this strategy uses a single parameter, pattern,

representing a design pattern instance. This strategy is composed of three phases. The

first, similar to Modular Grime, is the Data Gathering phase and is defined in Algorithm

7.2. The second phase handles the detection of the method pair forms of Class Grime and

is described in Algorithm 7.3. Finally, the third phase handles the detection of the singular

method forms of Class Grime and is described in Algorithm 7.4. The following describes

each phase in detail.

Phase 1: Class Grime Data Gathering The Class Grime detection process executes

across each type bound to a role within a pattern instance. Thus, line 3 of Algorithm 7.2

starts by iterating across all types of the pattern. Phase 1 consists of lines 4 - 7 in Algorithm

7.2.

The first step of this phase is the construction of a method-attribute graph. The graph

is a directed graph created by the constructGraph (line 4) call. This function creates

a graph in which methods and attributes of the provided type are the nodes. The edges

134

represent uses from methods to attributes or attribute accessor/mutator methods.

Next, the markMethods (line 5) call marks each method as either internal or external

to the pattern instance. Performing this marking is trivial, as an internal method is bound

to a role in the pattern instance. Additionally, this call also marks for which the method is

the source as direct or indirect. A direct edge is between a method and an attribute, and an

indirect edge is between a method and an accessor/mutator of an attribute.

Next, the markMethodPairs (line 6) call identifies each pair of methods accessing the

same attribute as either direct or indirect. A pair is only identified as direct if both methods

for a given attribute are individually direct. Otherwise, the pair is marked as indirect. Thus,

this call results in a 4-tuple consisting of a method pair, an attribute, and a boolean value

indicating direct or indirect.

Finally, the calculateDeltas (line 7) call calculates the change in two cohesion

metrics. The first metric, Tight Class Coupling (TCC) [30], measures the cohesion for

each method pair and a given attribute. The second metric, Ratio of Cohesive Interactions

(RCI) [40], considers the cohesion based on how individual methods use attributes. Both

metrics handle the cases of direct and indirect attribute use. The information gathered in

this phase is used in the following detection phases to identify any occurrences of Class

Grime.

Phase 2: Class Grime Detection for Method Pairs Class Grime Detection Phase 2 is

defined by Algorithm 7.3. This phase works similarly to the Modular Grime Detection Phase.

In this phase, method pair tuples and a list of findings are provided. Each tuple provides the

necessary data to identify Class Grime occurrences attributable to method pairs. Just as in

the Modular Grime Detection Strategy, several predicates provide the filtering mechanism

providing this identification. In this phase, each tuple is evaluated, extracting out the method

pairs as m1 and m2 along with determining whether the pair is direct or not. The predicate

135

Algorithm 7.3: Class Grime Detection Strategy - Pair Types

1: function DetectPairGrime(tuples, findings)
2: for all tuple ∈ tuples do
3: m1 ← tuple[1]
4: m2 ← tuple[2]
5: a← tuple[3]
6: direct← tuple[4]
7: if direct then
8: if (internal(m1) ∧ internal(m2)) ∧ decreases(m1,m2, a, ‘TCC

′) ∧
(calls(m1) = ∅ ∨ calls(m2) = ∅) then

9: findings← “IIPG”
10: else if (¬internal(m1) ∨ ¬internal(m2)) ∧ decreases(m1,m2, a, ‘TCC

′) ∧
(calls(m1) = ∅ ∨ calls(m2) = ∅) then

11: findings← “IEPG”
12: end if
13: else
14: if (internal(m1) ∧ internal(m2)) ∧ decreases(m1,m2, a, ‘TCC

′) ∧
(calls(m1) = ∅ ∨ calls(m2) = ∅) then

15: findings← “DIPG”
16: else if (¬internal(m1) ∨ ¬internal(m2)) ∧ decreases(m1,m2, a, ‘TCC

′) ∧
(calls(m1) = ∅ ∨ calls(m2) = ∅) then

17: findings← “DEPG”
18: end if
19: end if
20: end for
21: end function

internal(m) is true when the provided method is bound to a role in the pattern instance

other it is false. The decreases(m1,m2, a,met) predicate is true if the method pair’s use of

an attribute, a, reduces the provided metric, met, compared to a base that excludes those

uses. The calls(m) function returns the set of methods calling the provide method. Using

this knowledge, following the logic should be relatively straightforward. Each pair that meets

any criteria will add new grime findings to the finding list.

Phase 3: Class Grime Detection for Singular Methods Class Grime Detection Phase

3 is described by Algorithm 7.4. This phase works similarly to the last phase. In this phase,

136

Algorithm 7.4: Class Grime Detection Strategy - Singular Types

1: function DetectSingularGrime(graph, findings)
2: for all rel ∈ edges(graph) do
3: m← source(rel)
4: if direct(rel) then
5: if internal(m) ∧ decreases(rel‘RCI ′) ∧ calls(m) = ∅ then
6: findings← “DISG”
7: else if ¬internal(m) ∧ decreases(rel, ‘RCI ′) ∧ calls(m) = ∅ then
8: findings← “DESG”
9: end if

10: else
11: if internal(m) ∧ decreases(t,m, ‘RCI ′) ∧ calls(m) = ∅ then
12: findings← “IISG”
13: else if ¬internal(m) ∧ decreases(t,m, ‘RCI ′) ∧ calls(m) = ∅ then
14: findings← “IESG”
15: end if
16: end if
17: end for
18: end function

rather than tuples as input, this phase takes in the method-attribute graph. The graph

provides the necessary data to identify Class Grime occurrences attributable to singular

methods. The predicates used in this phase are the same as those in the last phase, with two

exceptions. The direct(r) evaluates to true if the provided relationship is marked direct and

false otherwise. The decreases(r,met) predicate evaluates to true if the provided relationship

causes a decrease in the provided metric when included versus when excluded. Additionally,

a new function, source(r), extracts the source method of the relationship. In this phase, each

relationship in the method-attribute graph is evaluated. Using the knowledge and properties

extracted during Phase 1 the relationships and their source methods are filtered to detect

any occurrences of grime. Those occurrences detected are then added as new findings to the

finding list.

137

Algorithm 7.5: Organizational Grime Detection Strategy

1: procedure Detect(pattern)
2: findings← ∅
3: (nsGraph, typeGraph)← constructGraphs(pattern)
4: mark(pattern)
5: calculateDeltas()
6: DetectModularOrgGrime(findings,nsGraph)
7: return findings
8: end procedure

7.2.3 Organizational Grime Detection

The detection strategy for Class Grime is depicted in Algorithms 7.2 – 7.4. Similar

to the Modular Grime detection strategy, this strategy uses a single parameter, pattern,

representing a design pattern instance. This strategy is composed of three phases. The

first, similar to Modular Grime, is the Data Gathering phase and is defined in Algorithm

7.2. The second phase handles the detection of the method pair forms of Class Grime and

is described in Algorithm 7.3. Finally, the third phase handles the detection of the singular

method forms of Class Grime and is described in Algorithm 7.4. The following describes

each phase in detail.

Phase 1: Oganizational Grime Data Gathering The Organizational Grime Data

Gathering Phase is described in Algorithm 7.5. This process, similar to the Modular and

Class Grime Data Gathering Phases, is provided a pattern instance. Phase 1 consists of lines

3 - 6 of Algorithm 7.2.

The first step of this phase is the construction of a namespace and type graphs. Both

are directed graphs created by the constructGraphs (line 3) call. This function creates

a type graph similar to the graph created in Modular Grime Phase 1. The namespace graph

is a directed graph consisting of all the namespaces in the system connected by dependencies

extracted from the couplings between classes in separate namespaces.

138

Algorithm 7.6: Organizational Grime Detection Strategy - Package Types

1: function DetectPackageOrgGrime(findings,typeGraph)
2: for all n ∈ nodes(typeGraph) do
3: if ¬internal(n) ∧ nsInternal(n) ∧ decreases(n, ‘CohesionQ′) then
4: findings← “PECG”
5: else if internal(n) ∧ nsInternal(n) ∧ decreases(n, ‘CohesionQ′) then
6: findings← “PICG”
7: else if ¬internal(n) ∧ nsInternal(n) ∧ decreases(n, ‘CouplingQ′) then
8: findings← “PERG”
9: else if internal(n) ∧ nsInternal(n) ∧ decreases(n, ‘CouplingQ′) then

10: findings← “PIRG”
11: end if
12: end for
13: end function

Next, the mark (line 5) call marks all types bound to a role in the provided pattern

instance as internal. This function also marks namespaces containing any such types as

internal. Additionally, for internal namespaces, types contained by those namespaces are

marked internal if not already.

Finally, the calculateDeltas (line 6) call calculates the change in the following

metrics. The first metric, CohesionQ, measures the closure quality of a package [3]. The

second metric, CouplingQ, measures the reuse quality of a package. The final metric,

Normalized Distance (D’), measures the instability of a set of packages [183]. The information

gathered in this phase is used in the following detection phases to identify any occurrences

of Organizational Grime.

Phase 2: Organizational Grime Detection for Package Types The Organizational

Grime Detection Phase 2 is defined by Algorithm 7.6. This phase works similarly to the

Modular Grime Detection Phase. In this phase, the type graph and a list of findings are

provided. Like the Modular Grime Detection Strategy, several predicates provide the filtering

mechanism providing this Organizational Grime identification. In this phase, each type in

139

the type graph is iterated across. Several predicates are then used to filter the types until

any occurrences of Organizational Grime are identified. The predicates and functions used

include the following. The predicate internal(t) evaluates true when the provided type, t,

is bound to a role in the pattern instance. The nsInternal(t) predicate evaluates to true if

the provided type, t, is contained within a namespace that has also been marked internal.

Finally, the predicate decreases(t,met) evaluates to true if the provided type, t, reduces

the provided metric, met when comparing the evaluation of the metric when the type is

excluded to when it is included. Using this knowledge, following the logic should be relatively

straightforward. Each type that meets the criteria for any subtype of Organizational Grime

defined in Algorithm 7.6 will result in an addition of new grime findings to the finding list.

Phase 3: Organizational Grime Detection for Modular Types Organizational

Grime Detection Phase 3 is described by Algorithm 7.7. This phase works similarly to

the last phase. In this phase, rather than tuples as input, this phase takes in the namespace

graph. This graph provides the necessary data to identify modular type Organizational

Grime occurrences. As in other detection strategies, a series of predicates and functions

are used to filter the data and identify a set of grime findings. The source(r) function

extracts the source namespace from a namespace dependency of the namespace graph. The

dest(r) function operates similarly to source(r) but extracts the destination side of the

relationship. The persistent(r) predicate evaluates to true if the relationship, r, is marked

persistent. The iternal(n) predicate evaluates to true if the provided namespace, n contains

types of bound to roles within the pattern instance. The cycle(r) predicate evaluates true

if the provided relationship is part of a cycle between namespaces. The dropInstability(r)

predicate evaluates to true if the provided relationship, r reduces the Instability metric for

the system. In this phase, each relationship in the namespace graph, nsGraph, is evaluated.

For each relationship within the graph, the source and destination namespaces are extracted.

140

Algorithm 7.7: Organizational Grime Detection Strategy - Modular Types

1: function DetectModularOrgGrime(findings,nsGraph)
2: for all rel ∈ edges(nsGraph) do
3: src← source(rel)
4: dest← dest(rel)
5: if persistent(rel) ∧ ((internal(dest) ∧ ¬internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ cycle(rel)) then
6: findings← “MPECG”
7: else if ¬persistent(rel) ∧ ((internal(dest) ∧ ¬internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ cycle(rel)) then
8: findings← “MTECG”
9: else if persistent(rel) ∧ ((internal(dest) ∧ internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ cycle(rel)) then
10: findings← “MPICG”
11: else if ¬persistent(rel) ∧ ((internal(dest) ∧ internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ cycle(rel)) then
12: findings← “MTICG”
13: else if persistent(rel) ∧ ((internal(dest) ∧ ¬internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ dropInstability(rel)) then
14: findings← “MPEUG”
15: else if ¬persistent(rel) ∧ ((internal(dest) ∧ ¬internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ dropInstability(rel)) then
16: findings← “MTEUG”
17: else if persistent(rel) ∧ ((internal(dest) ∧ internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ dropInstability(rel)) then
18: findings← “MPIUG”
19: else if ¬persistent(rel) ∧ ((internal(dest) ∧ internal(src)) ∨ (internal(src) ∧

¬internal(dest)) ∧ dropInstability(rel)) then
20: findings← “MTIUG”
21: end if
22: end for
23: end function

This pair of namespaces and the associated relationship are combined with the knowledge

and properties extracted during Phase 1 to filter the relationships and identify Organizational

Grime. Those occurrences detected are then added as new findings to the finding list.

141

Figure 7.1: Grime Detection integration with the Arc Framework.

7.3 Arc Framework Integration

To make the detection strategy framework useful, it needs to be integrated into the

Arc Framework, as depicted in Figure 7.1. The execution of this integration follows the

execution path depicted by the numbers encircled in green, as follows: 1.) When the

Arc System is initialized, it initializes the GrimeDetectTool, which provides the framework

with and instance of the GrimeDetectCommand. 2.) The GrimeDetectCommand performs

two functions: (i) it controls the operation of the Grime Detector and (ii) provides

access to the ArcDb via the ArcContext. 3.) The GrimeDetectCommand executes the

GrimeDetector which utilizes the detection strategy framework, described in Section 7.2. 4.)

The GrimeDetector executes all three grime detection strategies across applicable pattern

instances. 5.) As instances of design pattern grime are detected, each instance is provided

142

to the GrimeDetectCommand to be encoded into Findings and added to the Findings Table

of the ArcDb.

7.4 Conclusion

This chapter defined our approach for the automated detection of design pattern grime.

This approach uses implementations of detection strategies [179] and Moha et al. [196] for

each primary type of Design Pattern Grime. Each of these detection strategies was defined

using the taxonomy definitions from Chapter 9. Additionally, we describe the integration of

this system into the Arc experimentation framework making the validation study defined in

Chapter 11 possible.

143

CHAPTER EIGHT

PUTTING IT ALL TOGETHER: THE METHOD

Truth can only be found in one place: the code.

–Robert C. Martin

In the field of software engineering, there is an incredible rate of change in the methods

and tools used, leading to a call for more experimentation in software engineering [276].

Furthermore, this expediency of change has led to the proposal of an ever-increasing number

of issues purporting to affect the quality of software. However, these claims are typically only

supported by anecdotal data. The lack of empirical support underlying such claims leads

to a need to gain more in-depth insight into the nature of these phenomena. To accomplish

this, a process which provides the logical and scientific methods is required.

The development of such a generalized process would be too broad to be useful due to

the numerous and profoundly different contexts found within the software engineering field.

Thus, when considering the nature of design disharmonies and other software issues, we have

opted to constrain this approach to the context of the software itself. Here we consider only

the underlying source code, design documents, build files, and other artifacts that comprise

a software system.

Supporting this process are the frameworks and techniques documented in Chapters

4–7. The remainder of this chapter is organized as follows: Section 8.1 describes the aspects

of software engineering to study in both isolation and within live systems. Section 8.2

describes the general method and its application. Section 8.3 concludes with a summary and

the implications of this method on further study of design disharmonies.

144

Figure 8.1: Software engineering phenomena aspects of study.

8.1 Aspects to Study

The goal of this process is to increase our understanding of software engineering

phenomena. Before describing this method, we first describe the aspects of the phenomena

we wish to study and the phenomena’s observational context. We consider two main contexts

of study, as depicted in Figure 8.1: (i) In Isolation (corresponding to in vitro studies) and

(ii) In System (corresponding to in vivo studies). These contexts provide multiple lenses

through which to study such software engineering phenomena and are analogous to the

study of biological phenomena. Biological phenomena such as pathogens are studied both

in isolation in larger biological systems such as the human body.

In the case of the phenomena in isolation, we are concerned with the following four

aspects, as depicted in Figure 8.1: (i) Definition, (ii) Effects, (iii) Detection, and (iv)

Correction. In the case of the phenomena in system, we are concerned with the following five

aspects, as depicted in Figure 8.1: (i) Relations, (ii) Effects, (iii) Evolution, (iv) Correction

145

and (iv) Detection. The goals of each of these aspects in their respective context are as

follows:

• Definition: The goal is to explore the connections between the phenomena studied

and the greater body of software engineering knowledge. This connection relates well-

known concepts such as design principles, metrics, and quality within an overarching

logically consistent framework for the phenomena. This framework results in the

development of a community or research-driven taxonomy of the phenomena and its

subtypes.

• Effects: The goal is the evaluation of the effects that a manifestation of the phenomena

within software artifacts has on the developed product. Such effects may direct, such as

changes to the structure or behavior, or indirect, such as changes to quality attributes.

– In Isolation: The goal, in isolation, is the evaluation of the causal relationship

between the manifestation of the phenomena and the change this manifestation

has on system properties such as software product quality attributes.

– In System: The goal, in system, is to observe the changes explored in isolation,

over time, and to relate these observations to the effects of observed phenomena.

• Detection: The goal of detection is to develop techniques by which one may identify

instances of the phenomena in an automated or semi-automated way.

– In Isolation: The goal, in isolation, is to define initial detection capabilities based

upon the theoretical framework, from the definitional aspect, in conjunction with

knowledge of the effects of the phenomena.

– In System: The goal, in system, is the improvement of the efficiency and

accuracy of detection technique or the automated generation of improved

146

detection strategies based on the evolving understanding of the phenomena under

study.

• Correction: The goal is the identification of refactoring combinations or other

techniques (from here on called correction strategies) which remediate instances of

the phenomena and mitigate its effects on the overall software system.

– In Isolation: The goal, in isolation, is the initial identification of correction

strategies that will remediate instances of the phenomena at various levels of

severity.

– In System: The goal, in system, is the improvement of initial correction strategy

efficiency and accuracy through automated generation/improvement techniques.

Such techniques may utilize exiting correction strategies or generate new ones

based on the evolving understanding of the phenomena under study.

• Relations: This aspect focuses on the exploration of relationships between subtypes of

the phenomena and relationships to other types of software engineering phenomena.

The goals, in system, are as follows: (i) to further develop the descriptive framework,

(ii) to develop a notion of severity, and (iii) to understand relative priorities between

phenomena.

• Evolution: This aspect focuses on how instances of the phenomena change over time.

The goals, in system, are as follows: (i) To understand how software items are affected

due to the accumulation of the phenomena over time and (ii) To use knowledge

accumulation to develop an understanding of the susceptibility of the types of artifacts

affected and of the rarity of such phenomena occurring.

147

8.2 The Process

Having described the aspects, we are concerned with, the following describes a general

process to study software engineering phenomena. This approach guides this dissertation and

is based on the methods and techniques from Empirical Software Engineering, as described

by Wohlin et al. [276], Juristo and Moreno [136], and Runeson et al. [230].

We have developed a six-phase process forming the basic philosophy to guide the

development of experiments and case studies to further our understanding of design

disharmonies. This process, depicted in Figure 8.2, is divided into four sections: “in vitro

Experimentation”, “Bridge”, “in vivo Case Studies”, and “Bridge”. Although in vitro and

in vivo approaches are not new in empirical software engineering research, the definition of

an approach that prescribes a method to bridge these two concepts is novel. We consider

this last phase to be the one with the most impact on both researchers and practitioners.

Nevertheless, we have yet to complete all the necessary studies to gather the data needed to

begin the last two phases. Thus, we have grayed out both Phase 5 and Phase 6 Figure 8.2,

as we leave this to future work. The following describes this process in detail.

Central to the application of this process is the utilization of the Arc Framework,

as detailed in Chapter 3. Arc provides, as depicted in Figure 8.2, an internal experience

database surrounded by the hexagonal barrier with meter icons, we call this the core. The

core represents the data collection process for each phase, in which the results of executed

workflows are collected and stored in the database. Automated data collection exists for

each phase, though the entire process itself is not automated, which is appropriate, as each

phase is composed of multiple studies, requiring a period of refinement between phases. This

refinement allows for the use of prior phase results and the evolution of the process.

148

Figure 8.2: The methodological process for empirical research concerning software artifacts.

8.2.1 In Vitro Experimentation

The first section of this process is based on in vitro experimentation. Principles of

experimental design (as described by Wohlin et al. [276] and Juristo and Moreno [136]) in

concert with the results of prior studies and insight of the researchers guide the phases of

this section. This section contains Phases 1 and 2, described in the following.

Phase 1: Meta-Studies and Experiential Studies. Phase 1 comprises the initial

examination of the phenomena of concern, through a combination of several studies. The

initial study focuses on a full literature review. Such reviews may be formal or informal

meta-studies such as Systematic Literature Reviews (SLR) and mapping studies. These

149

studies result in the development of an initial set of guiding questions and research goals

and an initial theoretical framework.

The initial goals and questions, extracted from identified gaps in current knowledge,

are refined using the GQM approach, central to the entire method. Following the GQM

approach, researchers use the questions to develop a set of metrics (as indicated by the

meter icons in Figure 8.2). Finally, the researchers store the results (literature review results

and refined GQM) in the experience database (via the Arc Framework) for later analysis

and consultation.

The development of theoretical frameworks, e.g., taxonomies or ontologies of the

phenomena, should be developed based on existing knowledge of the phenomena and

their relationship to existing software engineering knowledge, through a coherent, logical

structure. A consistent structure is necessary if the framework is to be the basis for the

development/evaluation of tools used to detect instances of the phenomena. Additionally,

these theoretical frameworks are subject to validation by the research and practitioner

communities.

Replication or pilot studies provide the necessary validation and experience with the

theoretical models. These studies have the following goals: (i) to provide experience with

current processes, tools, and methods, (ii) to identify issues such tools, processes, and

methods, (iii) to validate prior research in new contexts, and (iv) to validate the theoretical

frameworks derived from prior meta-studies. The following provides a detailed overview of

the inner workings of this phase.

Figure 8.3 depicts the high-level overview of Phase 1. This phase has three basic steps,

as indicated by the numbers encircled in green: 1.) Initially conduct a meta-study such as an

SLR or Mapping Study to gather an understanding of the current research. The goal is the

development of both a theoretical framework defining the phenomena and the development

of an initial GQM hierarchy based on the current gaps in research. 2.) Refine the GQM

150

Figure 8.3: Phase 1 overview.

hierarchy through initial studies, such as community surveys (within both the industry and

research communities) and pilot studies. 3.) The study results should lead to a finalized

theoretical framework and GQM hierarchy. Furthermore, this phase results in an initial

instrumentation and setup of methods used in subsequent phases. If the researchers elected

to complete pilot studies, then exemplary instances of the phenomena should be collected

for further examination. The remainder of this section details the two subsections of this

phase.

Figure 8.4 depicts the meta-study process. This process follows the sequence indicated

by the numbers encircled in green, as follows. 1.) There are two possible paths (though there

are other study types and less formal approaches): (i) SLR and (ii) Mapping Studies. 2.)

Both study types initiate a GQM process to formulate the goals, questions, and metrics, and

defining the study GQM hierarchy. 3.) The constructed GQM hierarchy guides the studies

per the guidelines of Wohlin et al. [276]. 4.) These guidelines inform the query protocols

151

Figure 8.4: Phase 1 Meta-Studies details.

Figure 8.5: Phase 1 Experiencial Studies details.

defined for the collection of primary studies and the inclusion and exclusion criteria defined

to filter the primary studies. Secondary studies are collected using the snowballing technique

(tracing back from initial studies to identify other pertinent studies through references). The

combined process of collecting primary and secondary studies continues until the set of new

studies found is empty. 5.) Researchers refine the collected studies to a final set used during

data analysis. 6.) The data analysis serves to answer the questions defined in the study’s

GQM hierarchy. 7.) The results of this analysis refine the synthesized theoretical framework

and the initial GQM hierarchy for use in subsequent phases.

Figure 8.5 depicts the details of conducting the experiential studies. This process follows

the sequence indicated by the numbers encircled in green, as shown: 1.) are the two paths

152

previously mentioned: (i) Surveys and (ii) Pilot or Replication Studies. 2.) In both cases,

the GQM process formulates the goals of the study into a GQM hierarchy. 3.) This hierarchy

guides the study following the guidelines of Wohlin et al. [276]. 4.) For either study type,

a randomization method selects the experimental subjects, and the experiment conducted.

5.) During execution, the instruments (such as the survey itself or metrics tools) collect

data. 6.) The results of the data collection process are analyzed to answer the questions

initially posed. 7.) The results are used in the following ways. First, the results refine the

overarching GQM hierarchy and theoretical frameworks. Second, the data collected provides

example instances of the phenomena for further study. Finally, the process of completing

these studies yields the initial tooling/instrumentation needed to conduct further studies.

Phase 1 studies culminated in the development of both the background and literature

review (found in Chapter 2) and in the development of the extended grime taxonomy

(found in Chapter 9). Furthermore, we conducted a pilot study based on this foundational

knowledge [101] to validate our initial Class Grime taxonomy. The combined results of these

initial works are documented in the current grime taxonomy found in Chapter 9 and the

GQM hierarchy found in Chapter 1 and further developed in Chapters 9–11.

Phase 2: Injection Experiments. This phase begins with the review and refinement

of the GQM hierarchy developed as a result of Phase 1. This phase’s goal is to develop a

set of experiments, guided by the GQM hierarchy and based on the injection process, to

study the effects of these phenomena. The experiments evaluate the effects on instances

of the phenomena injected via Injection Strategies. These Injection Strategies derive from

the Phase 1 framework describing the phenomena and are central to the experiments. The

combination of these injection strategies and the operationalization of metrics defined in the

GQM hierarchy form the method and instrumentation needed to support the experiments

performed in this phase.

153

Figure 8.6: Phase 2 details.

The experiments execute after the refinement of the experimental methods, and the

initial setup of instrumentation. The goal of these experiments is to examine causal

relationships between selected measures and that the phenomena under study. Examining

these relationships allows us to develop a theoretical basis upon which later studies can build.

Regardless of whether the results are positive or negative, the system stores the results within

the experience database for later use.

Figure 8.6 depicts the details of conducting the Phase 2 experiments. This process

follows the sequence indicated by the numbers encircled in green, as follows: 1.) Resulting

from Phase 1 experiential studies is a collection of example instances of the phenomena.

2.) These examples, combined with the theoretical framework, allow researchers to distill

Injection Strategies describing the phenomena. These injection strategies generate instances

of the phenomena as part of a process akin to the growing of cultures in pathological studies.

This process allows for the investigation into the effects the investigated phenomena have

on software systems. 3.) The result of this is a collection of Injection Strategies used during

154

the data collection process of the experiments. 4.) Phase 2 experiments subdivide into

three specific types: (i) Effects experiments, (ii) Detection experiments, and (iii) Correction

experiments. The following further describes these experiments.

Each of the following experiments explores a specific facet of the phenomena in order

to gain a complete understanding. Effects experiments establish the causal relationships

between the manifestation of the phenomena and the effect it has on measures such as

software quality. The Detection experiments establish the accuracy and effectiveness of

proposed Detection Strategies on the detection of injected instances of the phenomena.

These experiments also calibrate Detection Strategies, ensuring that the broadest variation

of instances can be detected. Correction experiments define and establish the effectiveness

of correction strategies concerning the mitigation of injected instances of the phenomena.

This phase continues with the execution of the experiments selected.

5.) Each of these experiment types starts with the refinement of their respective sections

of Phase 1 derived GQM hierarchy. 6.) Following this refinement, the study designs follow the

guidance of Wohlin et al. [276]. 7.) The first process, within the experiment, is the selection of

experimental subjects. Here, entities that are typically affected by the phenomena are either

randomly selected from existing systems or generated via a randomized algorithmic process.

8.) Following selection, a refinement of the instrumentation used in Phase 1 experiments

commences, followed by the execution of the data collection process. 9.) The data collected

is then analyzed to answer the questions. 10.) These results, along with the generated

detection strategies and correction, are recorded.

Chapter 10 exemplifies Phase 2. These studies evaluate the effects of design pattern

grime on the measured software product maintainability (c.f. 2.4) and technical debt (c.f.

2.3) of generated design pattern instances (c.f. 4.3). These studies use the software injection

process detailed in Chapter 6. The results of these studies form the basis for understanding

the relationship between grime, quality and technical debt, and the basis for the verification

155

experiments, case studies, and evolutionary studies detailed in the following subsections.

8.2.2 Bridge: In Vitro to In Vivo

The knowledge gained from experimentation provides a capability for causal reasoning,

but it is not without limitations. Specifically, this experimental approach relies on the

analysis of injected instances of software phenomena. Such an approach precludes the

capability to observe the effects of “wild” instances found in live software systems. This

capability, On the other hand, is inherent in case studies and longitudinal studies. Although,

these studies typically preclude the ability for causal reasoning. Thus, a means by which

we can bridge the gap between a strong foundation provided through experimentation and

the insights gained via observational field studies are needed, leading to a combined form of

study we call Verification Experiments.

Verification Experiments are experimental case studies conducted to validate the results

of Effects, Inject, Correction, and Detection experiments within the context of real software

systems. The key to this is the controlled use of software injection within real software

systems allowing for the validation of the injection process itself. This approach provides an

intermediate layer connecting the case studies of Phase 4 with the experiments of Phase 2.

Phase 3, the single phase within this section, embodies the intermediate layer.

Phase 3: Verification Experiments. In this phase, we connect the approach used in

the in vitro experiments with the observational nature of the in vivo case studies. There are

two goals to this process. The first is to verify that the injection process works as expected

(i.e., that it correctly injects the issues/items of concern). Secondly, this process verifies the

accuracy of the injection process, such that injected instances are similar to those observed.

Figure 8.7 depicts the details of conducting Phase 3 verification experiments. This

process follows the sequence indicated by the numbers encircled in green, as follows. 1.)

There are two main verification experiments of concern: (i) Effects Verification and (ii)

156

Figure 8.7: Phase 3 details.

Correction Strategy Verification. 2.) Both experiment types begin with a refinement of the

respective section of the GQM hierarchy (from Phase 1). 3.) Following this refinement, the

study is designed following the guidance of Wohlin et al. [276] and Runeson et al. [230]. 4.)

Each study type begins with a project selection process, based on a rigorously defined case

selection criteria. 5.) Detection strategies are executed across the selected projects to identify

pairs of subsequent versions where the phenomena manifest. For the Effects Verification

study, potential experimental subjects are those artifacts appearing in each version wherein

the latter project contains the artifact afflicted. For the Correction Strategy Verification,

potential experimental subjects are those artifacts appearing in each version wherein the

former project contains the artifacts afflicted. The selection process then randomly selects

from those identified pairs. 6.) When selection completed, the data collection process begins.

The data collection process begins with the creation of two data sets. The first data set

marked (A), contains the natural evolution of the entities. That is, it contains the unmodified

pairs of data. The second data set marked (B) contains the original starting version of the

artifacts, and a version artificially evolved using either an injection or correction strategy,

depending on whether it is an injection or correction verification experiment, respectively.

157

Upon data set construction, the instrumentation measures metrics (defined by the GQM)

across the data sets, collecting data necessary to answer the GQM questions. 7.) After data

collection completes, the results are analyzed to compare the differences in measurements, per

pair, between the natural evolution and artificial evolution due to the application of injection

or correction strategies. 8.) The system stores the results to the experience database.

Research then use the analysis results to improve the injection and correction strategies.

Following this process, we conduct a verification study to validate that the observed

effects of injected grime on software maintainability and technical debt (as documented in

Chapter 10) match the effects we observed due to “wild” examples of grime found in open

source Java™ software systems. This study is documented in Chapter 11.

8.2.3 In Vivo Field Studies

The goal of the in vitro experiments were to form the underlying foundational knowledge

of the phenomena. This foundational knowledge expands, through In vivo studies, by

observation of afflicted software components in live systems. Specifically, we wish to see

how the phenomena and the knowledge gained in Phase 1 and 2 unfolds in actual software

engineering contexts. This section consists of Phases 4 and 5.

Phase 4: Case Studies. In Phase 4, case studies provide a further understanding of

the nature of the selected phenomenon. These studies provide the capability to observe

the phenomena in multiple contexts, domains, and environments. Contexts to consider

are the software type, i.e., open-source, industry, or governmental (or military), or the

implementation language. Software domains may include games, business applications,

operating systems, etc. Operating environments of the software may include, but are not

limited to, cloud-based, desktop, and mobile environments. The more comprehensive a study

is, the vaster the knowledge gained from it while reducing threats to external and conclusion

158

Figure 8.8: Phase 4 details.

validity. Additionally, case study methods provide the capability to gain an understanding

of the phenomena, which is impossible to gain through experimentation.

Figure 8.8 depicts the details of conducting Phase 4 case studies. This process follows

the sequence indicated by the numbers encircled in green, as follows. 1.) There are three

types of case studies to consider, as follows. Effects Case Studies explore the effects of the

phenomena on measures of interest (i.e. software quality aspects). Priority/Severity Case

Studies develop and evaluate phenomena subtype prioritization techniques as a means to

assign severity to instances of each subtype. Relations Case Studies explore the relationships

between phenomena subtypes and relationships between forms of software engineering

phenomena. 2.) Each of these study types begins with a refinement of the appropriate

section of the GQM hierarchy extracted in Phase 1.

3.) Following this refinement, the studies design commences using the guidance

of Runeson et al. [230]. 4.) Once designed, execution begins starting with a random

project (case) selection process, based on a rigorously defined case selection criteria. 5.)

Once projects are selected, detection strategies execute within the selected projects to

159

identify artifacts afflicted by instances of the phenomena. For Effects Case Studies, the

selection process considers changes occurring between versions to identify artifacts that

become afflicted between version changes to evaluate the effects due to that change. In

Priority/Severity and Relations Case Studies, the selection process only selects the current

version of individual projects. 6.) The data collection executes the metrics (from the GQM

hierarchy) measurement instruments. 7.) Researchers analyze the collected data to gain

insight concerning the effects, priority/severity, or relations of the phenomena under study.

The system stores this data in the experience database for later use.

Phase 5: Evolutionary Studies Evolutionary studies aim to expand upon the knowledge

gained from the previous phase by examining instances of the phenomena as they change

over time. Similar to case studies, this study includes instances across multiple contexts,

including time. In the case of software systems, the units of time are versions, commits to a

repository, release dates, or more typical time measurements such as days, weeks, months, or

years. The aspect of time provides the capability to evaluate both changes in the phenomena

and the system containing it. A desire to evaluate these changes leads to studies concerning

the following: the accumulation of the phenomena, the susceptibility of artifacts to such

accumulation, the priority of subtypes of the phenomena (when concerned with the need to

address these issues), the relative severity of individual phenomena instances, and the ripple

effects caused by the accumulation within the system.

Figure 8.9 depicts the details of conducting Phase 5 Evolutionary Studies. This process

follows the sequence indicated by the numbers encircled in green, as shown. 1.) The three

types of longitudinal studies to be considered. First, Buildup/Susceptibility Studies explore

the accumulation of the phenomena within a software system and component susceptibility

to accumulation. Secondly, Priority/Severity Studies evaluate the changes in instances of the

phenomena and how this affects their priority and severity. Finally, Ripple Effect Studies

160

Figure 8.9: Phase 5 details.

evaluate the effects on connected components overtime after the point in time that the

phenomena manifest. 2.) Each of these studies starts with the refinement of the appropriate

section of the GQM hierarchy developed in Phase 1. 3.) Following this refinement, the study

design relies on the guidance of Runeson et al. [230] for longitudinal case studies. 4.) Each

study type begins with a random project selection process, based on a rigorously defined

case selection criteria. This selection criteria defines the range of system/project versions and

identifies whether each version contains artifacts afflicted by the phenomena under study.

5.) For each phenomenon subtype, detection strategies identify afflicted artifacts to study.

6.) Identified artifacts are then subject to the data collection process. This process collects

the metrics identified as part of the GQM hierarchy, using selected instrumentation. 7.)

This collected data is then analyzed to answer the questions and provide further insight

concerning buildup/susceptibility, priority/severity, or ripple effects of the phenomena under

study. Finally, the system stores the results of the analysis in the experience database for

later use.

161

8.2.4 Bridge: In Vivo Results Informing In Vitro Experiments

The results of both the in vitro experiments and the in vivo studies bring together a

whole picture of the phenomena under study. The knowledge gathered to this point, via a

combination of studies, does not provide a clear method to operationalize this knowledge

towards efficient means of detecting or correcting the phenomena studied. Furthermore, it

does not provide a clear means as to provide the capability to predict the effects of an instance

in the software, nor does it provide a means to decide if and when such an instance should

be corrected. To address these limitations and bridge the gap between the prior studies and

the initial knowledge gathered, we turn towards the application of model building studies.

Here, the goal shifts from evaluating the effects of the phenomena under study and towards

prediction and model building. This approach will improve our understanding of the effects

of this phenomenon while developing new models and techniques for efficiently detecting and

correcting instances of these phenomena. This section consists of a single phase, Phase 6.

Phase 6: Model Building. In this phase, our goal is to utilize machine learning and

data science techniques to connect the results of the case studies and evolutionary studies

to the results of the initial experiments. The reason this phase is the last in the process is

three-fold. First, we must understand the phenomena before developing predictive models for

the phenomena’s effects or its priority/severity. Second, we need confirmed examples of the

phenomena before generating effective detection or correction strategies. Lastly, we require

the results of all the prior studies as a foundation to develop approaches that determine the

future effects of an instance and whether such an instance should be corrected.

That is, Phases 1–5 provide the necessary understanding of the phenomena to begin the

development of predictive models. These models can indicate the likely effects of an instance’s

continued presence within a software system, and decide which instance to remediate. The

same information should provide empirical results in improving detection strategies and

162

Figure 8.10: Phase 6 details.

correction strategies using automated generation processes (e.g. evolutionary programming).

Furthermore, the studies in Phase 1–5 will produce the necessary datasets used to train these

techniques.

Figure 8.10 depicts the details of conducting Phase 6 Model Building Studies. This

process follows the sequence indicated by the numbers encircled in green, as follows. 1.)

There are five types of model building studies to be considered. Firstly, Detection Strategy

Studies develop and evaluate approaches to automated generation of detection strategies.

Next, Correction Strategy Studies develop and evaluate approaches to automated generation

and evaluation of correction strategies. Next, Effects Studies develop predictive models of

the effects of phenomena instances. Next, Priority/Severity Studies develop and evaluate

techniques for automated assignment of phenomena priority/severity. Finally, Remediation

Studies explore the development of predictive models based on prior knowledge concerning

the evolution, priority assessment, severity assessment, and other properties of the instance

163

and the surrounding system, and explore the creation of decision models for instance

remediation. 2.) Each of these studies begins with the refinement of the appropriate section

of the GQM hierarchy extracted in Phase 1. 3.) Next, Researchers develop study designs

following the guidance of Alpaydin [5] for machine learning experiments.

4.) Using this guidance, Researchers divide the data sets gathered in prior phases

randomly into three subsets, as follows: (T) Test for testing the models, (Tr) Training for

building/training the models and (V) Validation for validating the trained models. 5.) Using

these datasets, the model building and validation step are conducted. As the models are

built, a k-fold cross-validation process is used to evaluate each of the models. Models may

be constructed using several different model-building techniques that are used as part of

this process, with the goal of selecting the best one/combination. 6.) Performance data is

collected by applying the model to the (V) dataset for each of the techniques used. The

resulting data for each technique are compared and statistically analyzed. 7.) The results

are stored in the experience database for later use. The generated detection and correction

strategies replace prior versions for use in future studies. The results of the Effects and

Priority/Severity Studies update the definitions of the phenomena.

8.3 Future Implications and Conclusions

This chapter illustrated the guiding process embodied within this work and the

experimental Arc Framework. Through the application of this process and the Arc

Framework, the following chapters show the power of this approach to explore software

engineering phenomena with a focus on design pattern grime. Though shown within this

research is a specific form of design disharmony, this process applies to any form of software

engineering phenomena manifesting within the confines of software artifacts. Examples of

such phenomena include (but are not limited to) the issues composing the technical debt

landscape: antipatterns, code smells, design pattern grime, and static analysis issues [131].

164

Furthermore, by extending the Arc Framework, behavioral and dynamic analysis issues are

also within the grasp of the study.

Thus, this process is not limited to the source code level. Instead, this approach (and

its underlying framework, Arc) applies to the study and evaluation of other forms of software

artifacts, including requirements, documentation, build scripts, and repository information.

These additional artifacts require extensions to the Arc framework to construct a sound

basis for experimentation. However, such a foundation allows for the extension of knowledge

through the execution of case studies and evolutionary studies. Thus, allowing for the

interrelation of multiple studies facilitating a deeper understanding of the nature of software

engineering phenomena. The following chapters demonstrate this approach and provide

evidence in support of these claims.

165

CHAPTER NINE

DESIGN PATTERN GRIME TAXONOMY

Good judgment comes from experience, and experience comes from bad

judgment.

–Frederick P. Brooks

9.1 Introduction

This chapter describes the extensions to grime taxonomy by expanding the Class and

Organizational leaves of the original grime taxonomy defined by Izurieta [132]. We first

elaborate on the approach used to define the taxonomies. We then define the extended

taxonomies for Class and Organizational Grime. We note that this taxonomy is only a

refinement rather than a final taxonomy of all grime.

RG1: Analyze design patterns to elaborate on the complete taxonomy of Class and

Organizational Grime.

RQ1.1: What are the types of Class Grime?

Rationale: This is a fundamental question of this research, inquiring as to the

nature of Class Grime.

RQ1.2: What are the types of Organizational Grime?

Rationale: This is a fundamental question of this research, inquiring as to the

nature of Organizational Grime.

Organization This chapter is organized as follows. Section 9.2 defines our process for

the definition and refinement of a taxonomy. Subsection 9.3 provides a formal definition of

the concepts underlying the taxonomy and provides for the predicates and set definitions

166

necessary to describe the concepts defining grime categories. Section 9.4 describes the basis,

conceptual components, and formal definitions of the Modular Grime taxonomy developed

by Schanz and Izurieta [234]. Section 9.5 describes the basis, conceptual components, and

formal definitions of the Class Grime taxonomy. Section 9.6 describes the basis, conceptual

components, and formal definitions of the Organizational Grime taxonomy. Finally, Section

9.7 concludes this chapter.

9.2 Taxonomy Definition Process

The goal of the taxonomy definition process is to elaborate possible grime subtypes,

further refining existing categories as was done by Schanz and Izurieta [234]. To extend this

taxonomy, we developed a process to elaborate on the Class and Organizational Grime types

further. The steps of this process are, as follows:

1. Develop an underlying formal framework necessary to develop the taxonomy.

2. Identify the software entities of concern, such as classes, packages, or relationships.

3. Identify the design principles or practices that affect these entities, which have not

already been elaborated upon by existing disharmonies.

4. Identify the measurable properties of these principles or their components to develop

the levels of the taxonomy.

5. Select metrics to measure the identified properties.

6. Define, formally, each type of grime identified as part of the newly extended taxonomy.

The following sections utilize this process to develop the Class Grime and Organizational

Grime taxonomies.

167

Figure 9.1: Example Package Graph.

9.3 Formal Framework

Design pattern grime categories, as defined by the following taxonomies, require an

underlying formal framework. Initially, we assume there is a system under analysis, S,

and that this system is defined using an object-oriented language such as UML or Java™.

Furthermore, a system can be described as S = 〈T ,Z〉, which is a tuple containing the

set of types, T , and relationships, Z, of the system. We also define R as the set of formal

specifications of design patterns using a design pattern specification language such as RBML.

To further define this framework, we consider two different perspectives: structural and

relational.

168

9.3.1 Structure

This subsection details the formal concepts related to the structural aspects of the

system and pattern representations. Each type, t ∈ TS , can be further defined as t =

〈At,Mt〉, which is a tuple containing the set of attributes for type t, At, and the set of

methods for type t,Mt. is further composed of a set of attributes A(t). The set of attributes,

At represents the data directly defined in the type. The set of methodsM(t) which represent

the behavior associated with the type and its contained data. For example, Figure 9.1

represents a system, S, wherein TS = {AB C DE F GH I J K L} and ZS is the set of

relationship between the types (excluding the dashed arrows between packages).

Types can be either internal or external to a package as determined by the predicates

internal and external, which are defined as follows: internal(t ∈ T , p ∈ P) ≡ t ∈ p

which evaluates to true if t is a type within the package p. external(t ∈ T , p ∈ P) ≡

¬internal(t, p) which evaluates to true if t is a type not in the package p. For example, in

Figure 9.1 internal(G,D) evaluates to true, as type G is in package D, and external(G,A)

evaluates to true as well. On the other hand, internal(F,B) evaluates to false and similarly

external(K,G) evaluates to false. A system’s types can also be partitioned into a set of

packages (also known as namespaces), PS . The set of packages can be defined using a set

partition as follows:
⋃

i∈PS

= TS ∧PSi ∩PSj = ∅ for i, j ∈ PS ∧ i 6= j. We assume that a single

type, t, may only be in a single package at one time. Thus, the set of types contained in a

package p ∈ PS is a proper subset of the types of the system itself: Tp ⊆ TS . For example,

in Figure 9.1 the set PS = {{AB} {C} {DE} {GF} {H I} {J} {K L}}.

The set of methods,Mt, for a given type, t, can be further partitioned into operations,

accessors, mutators. The set of accessors is extracted using the function accessors(t),

which evaluates to the set of accessor methods defined in type t. A method, m ∈ Mt,

can be determined if it is an accessor for attribute, a ∈ At, in type t using the predicate

accessor(m, a). The predicate accessor(m, a) evaluates to true if method m simply returns

169

Figure 9.2: Example Pattern Graph.

the value of attribute a and does nothing else. Similarly, the set of mutators is extracted

using the function mutators(t), which evaluates to the set of mutator methods defined in

type t. A method, m ∈ Mt, can be determined if it is a mutator for attribute, a ∈ At,

in type t using predicate mutator(m, a). The predicate mutator(m, a) evaluates to true if

method m simply modifies the value of attribute a and does nothing else. Finally, the set of

methods calling a method m can be extracted using the calls(m) function.

A design pattern realization L = 〈r ∈ R,Br〉 is a tuple consisting of a design pattern

specification (as defined using RBML [90]), r ∈ R, and a mapping of the roles of r to the

components of the system, Br. This binding is defined as, Br ≡ bind : CS → R. The set

CS = TS ∪ AS ∪MS ∪ PS which is the union of types, attributes, methods, and packages

defined across the system.

A pair of methods (mi,mj) can be either internal or external to a pattern realization.

170

This is determined by the internal and external predicates for method pairs. The internal

predicate is defined as internal((mi,mj, l ∈ L) ∈ Mt) ≡ internal(mi, l) ∧ internal(mj, l)

which evaluates to true if both methods mi and mj are are both internal to the pattern

representation l. The external predicate is defined as external((mi,mj, l ∈ L) ∈ Mt) ≡

external(mi, l) ∨ external(mj, l) which evaluates to true if either method mi or mj is

determined to be external to the pattern realization. Both of the method pair predicates are

based on the singular method predicates. The singular method internal predicate is defined

as internal(m ∈ Mt, l ∈ L) ≡ Bl(m) 6= ∅ which evaluates to true if there is a binding

from method m to a role in a pattern specification of pattern realization l as defined by Bl.

Similarly, the singular method external predicate is defined as external(m ∈ Mt, l ∈ L) ≡

¬internal(m, l)

9.3.2 Relationships

In the context of design pattern grime and object-oriented systems, we define three

specific types of relationships: (i) usage relationships between methods and attributes of the

same Class, (ii) connection relationships between classes, and (iii) dependency relationships

between packages. The remainder of this subsection further defines these relationships.

A relationship simply defines a directed connection from one component of a system

to another, as in: r ≡ (c1, c2). Here, c1 and c2 are two components of the system.

A relationship can be determined to be either persistent or temporary based on the

type of relationship it is. This determination can be evaluated using the persistent and

temporary predicates. The persistent predicate is defined as persistent(r ∈ Z) ≡ r.type ∈

{Generalization, Realization, Association} evaluates true if the relationship is of type

Generalization, Realization, or Association (including Composition or Aggregation). The

temporary predicate is defined as temporary(r ∈ Z) ≡ ¬persistent(r) evaluates true if not

persistent. For example, in Figure 9.1 persistent((A,B)) and persistent(C,F) both evaluate

171

Figure 9.3: Example Composite Graph.

to true, while persistent(F, J) evaluates to false. On the other hand, temporary(F, J)

evaluates to true, while temporary(J,G) evaluates to false.

Usage relationships describe the connection between the methods of a class and the

attributes within that Class. These connections form when the statements of a method’s

body contain a read or write to a field of the method’s containing Class. Thus the predicate

usage(m, a) evaluates to true if for some type, t, there is a method m ∈Mt and an attribute

a ∈ At where m contains a statement which reads or writes the value of a. The set of usages

of a type, t, can be defined as Ut ≡ {〈m, a〉 |usage(m, a) ∧m ∈Mt ∧ a ∈ At}.

A pair of methods can either directly or indirectly access an attribute. This can be

evaluated using the direct or indirect predicates for method pairs. The direct predicate is

defined as direct((mi,mj) ∈ Mt, a) ∈ Mt) ≡ direct(mi, a) ∧ direct(mj, a) and evaluates to

true if both the usage from method mi to attribute a is a direct access (rather than through

an accessor or mutator) and the usage from mj to a is also direct access. On the other

hand, the indirect predicate for method pairs is defined as indirect((mi,mj) ∈ Mt, a) ≡

indirect(mi, a)∨ indirect(mj, a) which evaluates to true if either the usages from method mi

or from method mj to attribute a is via an accessor or mutator. Both the method pair direct

172

and indirect predicates are derived from the singular method direct and indirect predicates.

The singluar method direct predicate is defined as direct(m ∈ Mt, a ∈ At) ≡ (m, a) ∈ Ut

which evaluates to true if there is a direct usage between methodm and attribute a andm and

a are defined in the same type t. Similarly the singluar method indirect predicate is defined

as indirect(m ∈ Mt, a) ≡ (calls(m,mi ∈ accessors(t)) ∧ accessor(mi, a)) ∨ (calls(m,mi ∈

mutators(t))∧mutator(mi, a)) which evaluates to true if there is call from m to some method

mi which is either an accessor or mutator for attribute a and all are defined in the same type

t. Figure 9.3 depicts several of the type properties as well as the aspects evaluated by the

previously defined predicates. For example, in Figure 9.3 we can see that for the type, Class,

depicted; the attributes set is defined as AClass = {a1 a2 a3} and the methods set is defined

as MClass = {accessorm1m2m3m4}. Additionally, we can see that direct((m1,m2), a1)

evaluates to false due to the fact that both direct(m1, a1) and direct(m2, a1) evaluate to

false. On the other hand, direct((m3,m4), a3) evaluates to true as both direct(m3, a3)

and direct(m4, a3) evaluate to true. Additionally, indirect(m2, a1) evaluates to true, but

indirect(m3, a2) evaluates to false.

Connections represent relationships between classes. Relationships that form con-

nections are Associations (including Aggregations and Compositions), Generalizations,

Realizations, and Dependencies (such as Usage). Connections are between classes and are

used to define the relationships between packages (known as dependencies). Note, multiple

connections could realize a single dependency. The set of connections in the system can be

defined as K ≡ {〈a, b〉 | conn(x, y)}. For example, in Figure 9.1 conn(F,K) evaluates to true,

but conn(K,L) evaluates to false.

A connection (t1, t2) can be determined as invalid in the context of a design

pattern realization using the following predicate: invalid(r = (t1, t2) ∈ K, l ∈ L) ≡

(r /∈ Bl ∧ internal(r)) ∨ (internal(t1, l) ∧ external(t2, l)) For example, in Figure 9.2

invalid((SearchClient, SearchStrategy)) evaluates false as there is a binding to that

173

relationship, but invalid(AnotherDFS,BreadthF irstSearch) evaluates to true as there is

no binding to that relationship.

A connection can be either internal or external to a pattern realization. This can be

evaluated using the predicates internal and external. The internal predicate is defined

as internal((ti, tj) ∈ K, l ∈ L) ≡ ti, tj ∈ Tl and evaluates true if the provided connection

is between two types defined within the pattern realization, l. The external predicate is

defined as external((ti, tj) ∈ K, l ∈ L) ≡ ti /∈ Tl ∨ tj /∈ Tl and evaluates to true if the

provided connection has at least one type which is external to the pattern specification. For

example, in Figure 9.2 internal(SearchClient, SearchStrategy) evaluates to true, as both

SearchClient and SearchStrategy are members of the pattern realization and fulfill roles

according to the pattern specification.

Dependencies represent relationships between packages. These relationships (as noted

previously) are formed by the connections between classes that cross package boundaries.

Thus the predicate depend(x, y) ≡ ∃c∈Tx,d∈Ty conn(x, y) evaluates to true if there exists

a class c in package x and a class d in package y such that there is a connection

between classes c and d. The set of dependencies in the system can be defined as

D ≡ {〈x, y〉 | depend(x, y) ∧ x, y ∈ P ∧ x 6= y}. For example, in Figure 9.1 depend(A,G)

evaluates to true, but depend(A,B) evaluates to false. For example, in Figure 9.1 the

set D = {(A,D) (B,D) (C,D) (D,E) (D,F) (F,D) (D,G)}, while the set of connections

between classes K = {(A,G) (B,G) (C,F) (E,G) (F,G) (F,K) (G, I) (J,G)}.

A sequence of dependencies where the target of a preceeding dependency is the source

of a succeeding depedency is called a path. Determining if such a sequence exists from one

package pi to another pj is determined by the predicate path(pi, pj). For example, in Figure

9.1 path(A,E) evaluates to true for packages A and E. Paths can then be used to form

the set of packages reachable from a given package p, which is defined as reachable(p) ≡

{x|path(p, x) ∧ p, x ∈ P} represents the set of packages to which a path (excluding cycles).

174

For example, in Figure 9.1 reachable(A) = DE F G. Additionally, a path can form a cycle if

the source of the first dependency in the sequence is the target of the last dependency in the

sequence. Formally, we can define a predicate cycle as cycle(p, q) ≡ path(p, q)∧depends(q, p)

which evaluates to true when there is a path from package p to package q and a dependency

from q to p. Often there packages define simple cycles where a package p depends on

package q and q also depends on p. This is formalized by the predicate directCycle(p, q) ≡

depends(p, q)∧depends(q, p). For example, in Figure 9.1 cycle(D,F) and directCycle(F,D)

both evaluate to true.

Each type of relationship defined above allows for the representation of the entities

as a graph structure. Usage relationships between the methods and attributes of a Type

construct a bipartite directed graph. On the other hand, Connections represent the structural

relationships between types forming a directed graph similar to a UML class diagram.

Dependencies represent the structural relationships between packages, which form a directed

graph similar to a UML Package Diagram.

9.4 Modular Grime

Modular Grime is the build-up of unnecessary and invalid relationships between classes

of a pattern realization and between classes of a pattern and classes external to the pattern.

Schanz and Izurieta [234] defined the Modular Grime taxonomy, c.f. Figure 9.4, included here

for completeness. We have re-envisioned the definitions of Modular Grime to be consistent

with the above formal framework while being equivalent to the original definitions.

9.4.1 Class Coupling

Coupling describes the interconnectedness of a set of classes. Based on this and the

principle of Low Coupling, Schanz and Izurieta decomposed coupling into three categories:

(i) Strength, (ii) Scope, and (iii) Direction, which form the levels of the Modular Grime

175

Grime

Class Modular

Persistent Temporary

Internal InternalExternal External

Afferent Efferent Afferent Efferent

Organizational

Type

Strength

Scope

Direction

PEAG PEEG TEAG TEEGTIGPIG
Modular

Grime

Izurieta and

Bieman

Shanz and

Izurieta

Figure 9.4: The extended Modular Grime taxonomy.

taxonomy.

Strength Strength indicates the strength of the coupling between classes. The strength

may be either persistent (couplings based on associations, generalizations, or realizations

between classes) or temporary (couplings based on local variable types, method return

types, or method parameter types (aka Use Dependencies)). Persistent couplings are more

challenging to remediate via techniques such as refactoring, whereas temporary relationships

tend to be more amenable to remediation via techniques such as refactoring.

Scope Scope indicates that a relationship contained within the context of the pattern

or not. Thus, the scope may be either internal (a relationship defined between two types

fulfilling roles within the pattern realization) or external (a relationship defined between a

type fulfilling a role in the pattern realization and one outside the definition of the pattern

realization).

176

Direction Direction indicates the direction of the coupling between types, in the context

of the pattern realization. The direction is only pertinent to those relationships that are

determined to be external. Relationships that are outgoing from the pattern realization are

called efferent couplings, and those that are incoming to the pattern realization are called

afferent couplings. These are measured using the Ce and Ca metrics [183], respectively.

Where Ce is the count of outgoing dependencies from a package to other packages, or in the

context of a pattern realization, it is the count of the outgoing couplings from pattern internal

classes to pattern, external classes. Similarly, Ca is the count of incoming dependencies from

other packages into a package, or in the context of a pattern realization, it is the count of

the incoming couplings from pattern external classes to pattern internal classes.

9.4.2 Modular Grime Examples

Figure 9.5 depicts an example of Persistent Internal Grime (PIG). The figure depicts a

Strategy Pattern realization in which all depicted classes are internal to the pattern. Except

for the green relationship from “AnotherDFS” to “BreadthFirstSearch,” all relationships are

valid based on the Strategy Pattern RBML definition. The green relationship indicates an

example of PIG.

Figure 9.6 depicts an example of Persistent External Efferent Grime. The dashed red

line partitions pattern realization connected classes into either internal classes (above and

to the right) or external classes (below and to the left). Furthermore, we see that there are

two incoming (efferent) associations (persistent) relationships crossing this border, which are

invalid to the pattern definition. These two lines (marked green) are two examples of PEEG.

In Figure 9.9 we can see an example of Direct Internal Single Grime (DISG). The figure

is the representation of a pattern class. The dashed red line indicates those methods internal

(specified by the pattern) or external (not specified by the pattern) to the pattern. The figure

depicts a case of DISG as there is a method, m1, allowed by the pattern specification that

177

SearchClient SearchStrategy

BreadthFirstSearch DepthFirstSearch

IterativeDeepening

DFS
AnotherDFS

Figure 9.5: An example of the PIG type of Modular Grime.

SearchClient SearchStrategy

BreadthFirstSearch DepthFirstSearch

IterativeDeepening

DFS
AnotherDFS

SearchClient

SearchClient

Pattern Boundary

Figure 9.6: An example of the PEEG type of Modular Grime.

178

directly uses an attribute, a1, but no other method uses that attribute. This instance of grime

indicates that there could be an unintentional secondary responsibility associated with this

Class or a misunderstanding on the part of the developer in the pattern’s implementation.

9.4.3 Modular Grime Categories

Using the notions of Strength, Scope, and Direction, Schanz and Izurieta defined six

specific categories of Modular Grime. In the following, we describe these categories and

provide a formal set definition for each based on the framework from Section 9.3.

Persistent Internal Grime (PIG) The set of relationships which are persistent, internal

to the pattern realization l, are invalid according to the pattern specification of l and where

the number of connections between classes of l increases. Formally, this defines the set

{r | l ∈ LS ∧ persistent(r) ∧ internal(r, l) ∧ invalid(r, l.r) ∧ |Kl| ↑}.

Temporary Internal Grime (TIG) The set of relationships which are temporary,

internal to the pattern realization l, are invalid according to the pattern specification of

l and where the number of connections between classes of l increases. Formally, this defines

the set {r | l ∈ LS ∧ temporary(r) ∧ internal(r, l) ∧ invalid(r, l.r) ∧ |Kl| ↑}.

Persistent External Efferent Grime (PEEG) The set of relationships which are

persistent, external to the pattern realization l, are invalid according to the pattern

specification of l, and which increase the efferent coupling of pattern instance l. Formally,

this defines the set {r | l ∈ LS ∧ persistent(r) ∧ external(r, l) ∧ invalid(r, l.r) ∧ Ce(l) ↑}.

Temporary External Efferent Grime (TEEG) The set of relationships which are

temporary, external to the pattern realization l, are invalid according to the pattern

specification of l, and which increase the efferent coupling of pattern instance l. Formally,

this defines the set {r | l ∈ LS ∧ temporary(r) ∧ external(r, l) ∧ invalid(r, l.r) ∧ Ce(l) ↑}.

179

Persistent External Afferent Grime (PEAG) The set of relationships which are

persistent, external to the pattern realization l, are invalid according to the pattern

specification of l, and which increase the afferent coupling of pattern instance l. Formally,

this defines the set {r | l ∈ LS ∧ persistent(r) ∧ external(r, l) ∧ invalid(r, l.r) ∧ Ca(l) ↑}.

Temporary External Afferent Grime (TEAG) The set of relationships which are

temporary, external to the pattern realization l, are invalid according to the pattern

specification of l, and which increase the afferent coupling of pattern instance l. Formally,

this defines the set {r | l ∈ LS ∧ temporary(r) ∧ external(r, l) ∧ invalid(r, l.r) ∧ Ca(l) ↑}.

9.5 Class Grime

Class Grime is the build-up of unnecessary (given the specification of a pattern) methods

and fields within the classes of a pattern instance. Such a build-up implies a violation of one

or more of the following design principles:

• The YAGNI (You Ain’t Gonna Need It) principle – you should not add functionality

until you are going to need it [88].

• The Single Responsibility Principle (SRP) – a class should only have responsibility for

a single part of the functionality of the software, and the Class should fully encapsulate

this responsibility [183].

• The Interface Segregation Principle (ISP) – no client should depend on those methods

it does not use [183].

• High class cohesion – the responsibilities of the methods within a class should be highly

related and support the responsibility of that Class [286].

Each of these principles speaks to the cohesion of a class. High cohesion is a fundamental

object-oriented principle, in which a highly cohesive class is a class in which its member

180

Structural

Grime

Class ModularOrganizational

Direct Indirect

Internal ExternalInternal External

Pair SinglePair SinglePair SinglePair Single

IESGIEPGIISGIIPGDESGDEPGDISGDIPG

Type

Strength

Scope

Direction /

Context

Class

Grime

Izurieta and

Bieman

Figure 9.7: The extended Class Grime taxonomy.

fields and methods work together to address a single primary responsibility of the Class.

Using cohesion as the fundamental property, we have divided Class Grime into eight specific

subtypes, as depicted in Figure 9.7. The following sections further explain this division.

9.5.1 Class Cohesion

Cohesion describes how well constructed a class is [39]. The higher the cohesion of

a class, the closer aligned its internal components are towards a common goal. In design

pattern realizations, the classes should represent individual responsibilities of the pattern,

and each Class should have high cohesion. Thus cohesion provides a basis to determine

whether a design pattern realization’s classes contain Class Grime.

Strength Strength indicates how a class’ methods access its local attributes. The method

of access can be either direct (methods directly access attributes) or indirect (attribute

accessed through the use of accessor/mutator methods). Figure 9.8 depicts each method

of access. In this figure, the unbroken lines between attributes (rectangles) and methods

181

Class

m1 m2 m3 m4

a1 a2 a2

Internal

External

Class

m1 m2 m3 m4

a1 a2 a3

Internal

External

accessor

Figure 9.8: An example of the IESG type of Class Grime.

(rounded rectangles) are direct relationships, and the lines broken by a smaller rounded

rectangle are indirect relationships. Direct attribute use provides a stronger but more

brittle relationship between the method and attribute, causing issues when attempting to

refactor by moving the attribute. Whereas indirect attribute use implies a flexible and

weaker relationship between the method and attribute, but one which is more amenable to

refactoring.

Scope In the context of pattern classes, the scope can either be internal or external.

Internal refers to attributes access by a local method (or local method pair, depending on

context) defined by the pattern specification. External refers to attributes accessed by at

least one local method (or local method pair) not defined by the pattern specification. In

Figure 9.8, the internal/external division is shown by the dashed red line dividing the Class

into methods/attributes associated with the pattern specification of that Class and those

methods/attributes not specified by the pattern specification. Thus providing a means

to distinguish between identification of attributes or methods that obscure the pattern

182

implementation by reducing overall class cohesion.

Context The context refers to the types of relationships taken into account by surrogate

metrics used to measure cohesion. The majority of cohesion metrics take one of two

perspectives: single-method use or method pair use of attributes [39]. In order to satisfy the

strength, scope, and context aspects of the taxonomy, we have selected two metrics. The

first is Tight Class Cohesion (TCC) [30], which measures the cohesion of a class by looking

at pairs of methods with attributes in common, and it can handle both indirect and direct

attribute use. The second is the Ratio of Cohesive Interactions (RCI) [40] metric, which

measures the cohesion of a class by looking at how particular methods use attributes, and

it can handle both indirect and direct attribute use.

Class

m1 m2 m3 m4

a1 a2 a2

Internal

External

Class

m1 m2 m3 m4

a1 a2 a3

Internal

External

Figure 9.9: Example of DISG.

9.5.2 Class Grime Example

In Figure 9.9 we can see an example of Direct Internal Single Grime (DISG). The figure

is the representation of a pattern class. Where the dashed red line indicates those methods

that are internal (specified by the pattern) and those external (not specified by the pattern).

183

The figure depicts a case of DISG, as there exists a method, m1, allowed by the pattern

specification that directly uses an attribute, a1, but no other method uses that attribute.

This instance of DISG indicates that there could be an unintentional secondary responsibility

associated with this Class or a misunderstanding on the part of the developer in the pattern’s

implementation.

9.5.3 Class Grime Categories

Using the notions of Strength, Scope, and Context, we define eight specific categories

of Class Grime. In the following, we describe these categories and provide a formal set

definition for each based on the framework from Section 9.3.

Direct Internal Pair Grime (DIPG) The set of method pairs from the type t which

are internal to pattern realization l, form a direct relationship to the same attribute a, the

set of methods calling m1 is empty, and for which the relationships decrease the TCC of

t. Formally, this defines the set {(m1,m2) | t ∈ TS ∧ m1,m2 ∈ Mt ∧ r1 = (m1, a) ∧ r2 =

(m2, a) ∧ a ∈ At ∧ direct(r1, r2) ∧ internal(m1,m2) ∧ calls(m1) = ∅ ∧ TCC(t) ↓}.

methods and attributes within the classes of a pattern. DIPG can be observed when

(mi, mj) ∈ Internal, (ri, rj) ∈ Direct, ri.attribute = rj.attribute, and TCC decreases.

Direct Internal Single Grime (DISG) The set of methods from the type t which are

internal to pattern realization l, forms a direct relationship to attribute a, the set of methods

calling m is empty, and for which the relationships decrease the RCI of t. Formally, this

defines the set {m | t ∈ TS ∧ m ∈ Mt ∧ r = (m, a) ∧ a ∈ At ∧ direct(r) ∧ internal(m) ∧

calls(m) = ∅ ∧RCI(t) ↓}.

Direct External Pair Grime (DEPG) The set of method pairs from the type t which

are external to pattern realization l, form a direct relationship to the same attribute a, the

184

set of methods calling m1 is empty, and for which the relationships decrease the TCC of

t. Formally, this defines the set {(m1,m2) | t ∈ TS ∧ m1,m2 ∈ Mt ∧ r1 = (m1, a) ∧ r2 =

(m2, a) ∧ a ∈ At ∧ direct(r1, r2) ∧ external(m1,m2) ∧ calls(m1) = ∅ ∧ TCC(t) ↓}.

Direct External Single Grime (DESG) The set of methods from the type t which are

external to pattern realization l, forms a direct relationship to attribute a, the set of methods

calling m is empty, and for which the relationships decrease the RCI of t. Formally, this

defines the set {m | t ∈ TS ∧ m ∈ Mt ∧ r = (m, a) ∧ a ∈ At ∧ direct(r) ∧ external(m) ∧

calls(m) = ∅ ∧RCI(t) ↓}.

Indirect Internal Pair Grime (IIPG) The set of method pairs from the type t which

are internal to pattern realization l, form an indirect relationship to the same attribute a,

the set of methods calling m1 is empty, and for which the relationships decrease the TCC

of t. Formally, this defines the set {(m1,m2) | t ∈ TS ∧m1,m2 ∈ Mt ∧ r1 = (m1, a) ∧ r2 =

(m2, a) ∧ a ∈ At ∧ indirect(r1, r2) ∧ internal(m1,m2) ∧ calls(m1) = ∅ ∧ TCC(t) ↓}.

Indirect Internal Single Grime (IISG) The set of methods from the type t which are

internal to pattern realization l, forms an indirect relationship to attribute a, the set of

methods calling m is empty, and for which the relationships decrease the RCI of t. Formally,

this defines the set {m | t ∈ TS ∧m ∈Mt∧ r = (m, a)∧a ∈ At∧ indirect(r)∧ internal(m)∧

calls(m) = ∅ ∧RCI(t) ↓}.

Indirect External Pair Grime (IEPG) The set of method pairs from the type t which

are external to pattern realization l, form a indirect relationship to the same attribute a,

the set of methods calling m1 is empty, and for which the relationships decrease the TCC

of t. Formally, this defines the set {(m1,m2) | t ∈ TS ∧m1,m2 ∈ Mt ∧ r1 = (m1, a) ∧ r2 =

(m2, a) ∧ a ∈ At ∧ indirect(r1, r2) ∧ external(m1,m2) ∧ calls(m1) = ∅ ∧ TCC(t) ↓}.

185

Indirect External Single Grime (IESG) The set of methods from the type t which

are external to pattern realization l, forms an indirect relationship to attribute a, the set of

methods calling m is empty, and for which the relationships decrease the RCI of t. Formally,

this defines the set {m | t ∈ TS ∧m ∈Mt∧ r = (m, a)∧a ∈ At∧ indirect(r)∧ external(m)∧

calls(m) = ∅ ∧RCI(t) ↓}.

9.6 Organizational Grime

Organizational Grime is the accumulation of design pattern grime due to the allocation

of pattern classes to packages, namespaces, or modules within a software system. The

development of the Organizational Grime hierarchy comes from the following design

principles:

• The Acyclic Dependencies Principle (ADP) – Dependencies between packages should

not form cycles [183].

• The Stable Dependencies Principle (SDP) – Depend in the direction of stability [183].

• The Stable Abstractions Principle (SAP) – Abstractness should increase with stability

[183].

• The Common Closure Principle (CCP) – Classes in a package should be closed to the

same kinds of changes [183].

• The Common Reuse Principle (CRP) – Classes in the same package should be reused

together [183].

These principles speak to both the coupling between packages and the cohesion within a

package. Using the properties of package coupling and cohesion, we have divided package

grime into twelve specific subtypes, as depicted in Figure 9.10. The following sections further

explain this division.

186

Structural

Grime

Class ModularOrganizational

Persistent

External

Cyclical Unstable

External

MPEUGMPECGPERGPECG

Type

Strength

Scope

Direction /

Context

Organizational

Grime

Closure Reuse

ModularPackage

Temporary

External

Cyclical

MTEUGMTECG

Internal

Cyclical

MTIUGMTICG

Internal

Cyclical

MPIUGMPICG

Unstable Unstable Unstable

Internal

PIRGPICG

Closure Reuse

Izurieta and

Bieman

Figure 9.10: Organizational Grime taxonomy.

9.6.1 Package Cohesion

Package cohesion is used to develop the Package subtype of Organizational Grime, as

seen in Figure 9.10. Here we consider only the scope and context properties. Together these

concepts are used to form the Package branch of Organizational Grime.

Scope The scope can be either internal or external, both referring to the addition of a new

class or type to a package. If the new class or type is also a member of the pattern under

consideration, then its scope is internal; otherwise, it is external.

Context/Direction The context property takes the form of either closure or reuse.

Closure here indicates that the new class or type fits within the package by being closed

to similar changes as the other classes. Reuse indicates that we are concerned with how

well a class integrates into its containing package based on how tightly it couples with the

remaining classes.

The closure quality of a package is measured using the CohesionQ metric defined by

Abdeen et al. [3]. The reuse quality of a package is measured using the CouplingQ metric

187

defined by Abdeen et al. [3]. These metrics are calculated using the following formulas:

CohesionQ(p) =
|pInt.D|
|pD|

(9.1)

CouplingQ(p) = 1− |pPro.P ∪ pCli.P |
|pD|

(9.2)

Common to both CohesionQ and CouplingQ, the set pD is the set of all dependencies in and

out of package p. Formally we define pD as pD ≡ ∀pi∈PS ((p, pi) ∈ D∨(pi, p) ∈ D)∧p 6= pi. The

set pInt.D is the set of internal dependencies (connections) between classes within package

p. Formally we define pInt.D as pInt.D ≡ ∀{ti,tj}∈p(ti, tj) ∈ K. Finally, pPro.P is the set of

packages which a package, p, depends on, and pCli.P is the set of packages a package, p, is

depended on by.

9.6.2 Package Coupling

Package coupling is the basis of the Modular subtype of Organizational Grime, c.f.

Figure 9.10. Together these concepts are used to form the Modular branch of Organizational

Grime.

Strength Here we consider three properties of coupling between packages. The first is the

strength, which can be either persistent or temporary. Persistent couplings are those created

by inheritance, realization, associations (including aggregation and composition), temporary

are the remaining dependencies such as use dependencies.

Scope The next property is scope, which can be either internal or external. Internal

couplings are those that are caused by classes within the same pattern but spread across

packages. External couplings are relationships between packages that are caused by external

classes interacting with pattern classes across packages.

188

Context/Direction The final property is direction/context. Here we are looking at how

the coupling affects cyclic dependencies between packages, cyclical value, and the flow of

stability between packages, unstable value. When we are considering whether the new

dependency will cause cycles between packages we are in the cyclical context, and when

we are considering the flow of dependencies towards stability, then we are in the unstable

context. Cycles in the package dependency graph can be evaluated using the algorithm

for enumerating cycles in a directed graph developed by Liu and Wang [120]. Instability

of packages is measured using Martin’s Normalized Distance (D’) metric [183], which is

calculated as follows:

D′ = |A+ I − 1| (9.3)

A =
Na

Nc

(9.4)

I =
Ce

Ca + Ce

(9.5)

Equation 9.1 represents the distance from the main sequence and has values in the range

[0,1] with 0, indicating that the package is on the main sequence. Packages with values

away from zero tend to be less maintainable and more sensitive to change. To complete the

computation of D′, we need to calculate several other values. The first is the Abstractness

(A) metric, which is a measure of the level of abstraction in a given package. The A metric is

calculated as the ratio of the number of abstract classes (Na) to the number of classes (Nc)

in a package. The second value necessary for calculating D′ is the Instability (I) metric,

which measures the level of instability of a given package. The I metric is the ratio of the

number of efferent couplings (Ce) of a package to the sum of the number of efferent (Ce) and

afferent couplings (Ca) of a package.

189

{xor}

Figure 9.11: Example of PECG.

9.6.3 Organizational Grime Example

In Figure 9.11 we can see an example of Package External Closure Grime (PECG). In

this diagram, those classes which are a part of the pattern as grey rectangles, and classes not

part of the pattern as white rectangles. The figure depicts dependencies between packages

using a dashed line with an open arrowhead pointing in the direction of the dependency,

while other relationships follow the usual UML syntax. The red items mark the causes of

grime. Here there is an XOR relation between either an existing class or new class (both

external to the pattern) interacting with a non-pattern class but increasing the number of

packages reachable from pattern packages.

9.6.4 Organizational Grime Categories

Using the notions of Strength, Scope, and Context, we define twelve specific categories

of Organizational Grime. In the following, we describe these categories and provide a formal

set definition for each based on the framework from Section 9.3.

190

Package External Closure Grime (PECG) The set of classes which are internal to a

pattern bearing package, external to a pattern realization, and whose connections decrease

the cohesion quality (and thus the common closure) of the package. Formally, this defines

the set {c | l ∈ L ∧ p ∈ Pl ∧ external(c, l) ∧ internal(c, p) ∧ CohesionQ(q) ↓}.

Package External Reuse Grime (PERG) The set of classes which are internal to a

pattern bearing package, external to a pattern realization, and whose connections decrease

the coupling quality (and thus the common reuse) of the package. Formally, this defines the

set {c | l ∈ L ∧ p ∈ Pl ∧ external(c, l) ∧ internal(c, p) ∧ CouplingQ(q) ↓}).

Package Internal Closure Grime (PICG) The set of classes which are internal to a

pattern bearing package, internal to a pattern realization, and whose connections decrease

the cohesion quality (and thus the common closure) of the package. Formally, this defines

the set {c | l ∈ L ∧ p ∈ Pl ∧ internal(c, l) ∧ internal(c, p) ∧ CohesionQ(q) ↓}.

Package Internal Reuse Grime (PIRG) The set of classes which are internal to a

pattern bearing package, internal to a pattern realization, and whose connections decrease

the coupling quality (and thus the common reuse) of the package. Formally, this defines the

set {c | l ∈ L ∧ p ∈ Pl ∧ internal(c, l) ∧ internal(c, p) ∧ CouplingQ(q) ↓}).

Modular Persistent External Cyclical Grime (MPECG) The set of dependencies

between a pattern-bearing package and a non-pattern-bearing package, created due to a

persistent connection between classes, and cause a cyclic dependency between the connected

packages. Formally, this defines the set {(d, e) | persistent((d, e)) ∧ (external(d,Pr) ∨

external(e,Pr)) ∧ r ∈ R ∧ cycle(d, e)}.

Modular Temporary External Cyclical Grime (MTECG) The set of dependencies

between a pattern-bearing package and a non-pattern-bearing package, created due to a

191

temporary connection between classes, and cause a cyclic dependency between the connected

packages. Formally, this defines the set {(d, e) | temporary((d, e)) ∧ (external(d,Pr) ∨

external(e,Pr)) ∧ r ∈ R ∧ cycle(d, e)}.

Modular Persistent Internal Cyclical Grime (MPICG) The set of dependencies

between packages which contain types that are internal to a pattern instance, created due to

a persistent connection between classes, and cause a cyclic dependency between the connected

packages. Formally, this defines the set {(d, e) | persistent((d, e)) ∧ internal(d, e,Pr) ∧ r ∈

R ∧ cycle(d, e)}.

Modular Temporary Internal Cyclical Grime (MTICG) The set of dependencies

between packages which contain types that are internal to a pattern instance, created due to a

temporary connection between classes, and cause a cyclic dependency between the connected

packages. Formally, this defines the set {(d, e) | temporary((d, e)) ∧ internal(d, e,Pr) ∧ r ∈

R ∧ cycle(d, e)}.

Modular Persistent External Unstable Grime (MPEUG) The set of dependencies

between pattern-bearing package and a non-pattern-bearing package, created due to a per-

sistent connection between classes, and the source side of the dependency is more stable than

the target side of the dependency. Formally, this defines the set {(d, e) | persistent((d, e)) ∧

((external(d,Pr)∧internal(e,Pr)∧I(e) ≤ I(d))∨(internal(d,Pr)∧external(e,Pr)∧I(d) ≤

I(e)))}.

Modular Temporary External Unstable Grime (MTEUG) The set of dependencies

between pattern-bearing package and a non-pattern-bearing package, created due to a tem-

porary connection between classes, and the source side of the dependency is more stable than

the target side of the dependency. Formally, this defines the set {(d, e) | temporary((d, e))∧

192

((external(d,Pr)∧internal(e,Pr)∧I(e) ≤ I(d))∨(internal(d,Pr)∧external(e,Pr)∧I(d) ≤

I(e)))}.

Modular Persistent Internal Unstable Grime (MPIUG) The set of dependencies

between packages which contain types that are internal to a pattern instance, created

due to a persistent connection between classes, and the source side of the dependency

is more stable than the target side of the dependency. Formally, this defines the set

{(d, e) | persistent((d, e)) ∧ internal(d, e,Pr) ∧ I(d) ≤ I(e)}.

Modular Temporary Internal Unstable Grime (MTIUG) The set of dependencies

between packages which contain types that are internal to a pattern instance, created

due to a temporary connection between classes, and the source side of the dependency

is more stable than the target side of the dependency. Formally, this defines the set

{(d, e) | temporary((d, e)) ∧ internal(d, e,Pr) ∧ I(d) ≤ I(e)}.

9.7 Conclusion

This chapter presented the enhanced design pattern grime taxonomy. We detailed the

exact methodology used to develop enhanced Class and Organizational Grime taxonomies.

Furthermore, we connected these taxonomies to the underlying software engineering

principles they are codifying as well as the metrics that lead to the definition of their

detection strategies. The development of these taxonomies, along with the existing modular

grime taxonomy, leads directly into the design of both injection and detection strategies for

different grime types.

193

CHAPTER TEN

EXPERIMENTATION: THE EFFECTS OF GRIME ON MAINTAINABILITY AND

TECHNICAL DEBT

It’s hard enough to find an error in your code when you’re looking for it; its

even harder when you’ve assumed your code is error-free.

–Steve McConnell

10.1 Introduction

The ability to predict the effects on software quality that a design or implementation

decision will have on the underlying software is of great concern. Also of great concern is

the effects that design and management decisions will of on a systems incurred technical

debt. Predicting the effects that design pattern grime would have for a given design

or implementation is no different. The first step in this direction is to understand the

relationship between grime and quality and grime and technical debt before predicting its

effects. Thus, this chapter explores the effects of design pattern grime on software systems’

maintainability and technical debt. The goal of these experiments, stated in Section 1.1.1,

are restated here for the reader’s convenience:

RG2: Analyze design pattern instances afflicted with design pattern grime for the

purpose of evaluation with respect to the ISO/IEC 25010 Maintainability

subcharactersitics [126], from the perspective of researchers, in the context of

generated Java™ design pattern instances.

RG3: Analyze design pattern instances afflicted with grime for the purpose of evaluation

with respect to the Technical Debt Principal and Interest, from the perspective

of researchers, in the context of generated Java™ design pattern instances.

194

This goal leads to our main questions of interest and their corresponding rationales:

RQ2: How does each type of grime affect software product maintainability?

Rationale: Evaluate the assertion that as grime builds up in a pattern instance

or software system, it will negatively affect the software or pattern instance’s

maintainability.

RQ3: How does each type of grime affect a software product’s technical debt estimate?

Rationale: Evaluate the assertion that as grime builds up in a pattern instance

or software system, it will increase the technical debt principal and interest.

This chapter is organized as follows. Section 10.2 describes the experimental methods

used and the corresponding experimentation plan, including the data collection and analysis

procedures. Section 10.3 describes the outcome of the execution of the experiment, including

sample characteristics, data preparation steps, data collection performed, and any deviations

from the experiment plan. Section 10.4 describes the results and analysis conducted following

the analysis procedures. Section 10.5 discusses the analysis results and their interpretation

within this study’s context and prior work. Section 10.6 concludes this study.

10.2 Methods

This section describes the experimental methods used to answer RQ2 and RQ3.

Towards these goals this section contains subsections that further refine these research

questions and identify their necessary metrics. Additionally, we describe the experimental

designs, data collection procedures, and analysis procedures used when answering the

research questions. Finally, we end this section with a discussion concerning the validity

of the overall approach.

195

10.2.1 Refined Research Questions and Metrics

Following the GQM approach, we begin the experimental design with a refinement of

the questions RQ2 and RQ3 into a series of directly answerable questions, their underlying

rationale, and a set of metrics defined to facilitate answering these questions. The refined

questions are as follows:

RQ2.1: How does each type of Grime affect design pattern quality for each of the selected

Maintainability sub-characteristics?

Rationale: Evaluate the assertion that as grime builds up in a pattern instance

or software system, it will negatively affect Maintainability.

RQ2.2: What level of injection severity affects a change in design pattern quality for each

of the Maintainability sub-characteristics?

Rationale: Evaluate the assertion that grime affects Maintainability at all

severity levels.

RQ2.3: What is the difference between the effects of the grime types and their subtypes

on maintainability sub-characteristics?

Rationale: Evaluate the assertion that each grime type or each grime subtype

affects Maintainability similarly.

RQ3.1: How does each type of grime affect design pattern technical debt principal and

interest?

Rationale: Evaluate the assertion that as grime builds up in a pattern instance

or a software system, it will affect the accumulation of the software or pattern

technical debt principal.

RQ3.2: What level of grime severity affects a change in design pattern technical debt

principal and interest?

196

Rationale: Evaluate the assertion that as grime builds up in a pattern instance

or a software system, it will affect the accumulation of the software or pattern

technical debt principal.

RQ3.3: What is the difference between the effects of the grime types and their subtypes

on technical debt principal and interest?

Rationale: Evaluate the assertion that grime affects technical debt interest and

principal at all severity levels.

Maintainability, as defined in the ISO/IEC 25010 Quality Model, is composed of

following five sub-characteristics: Analyzability, Testability, Modifiability, Modularity, and

Reusability. These are the sub-characteristics referenced in RQ2.1 – 2.3. The definition of

these and other pertinent metrics necessary to answer questions RQ2.1 – 2.3 and RQ3.1

– 3.3 are defined as follows:

M2.1: Analyzability – “degree of effectiveness and efficiency with which it is possible

to assess the impact on a product or system of an intended change to one or

more of its parts, or to diagnose a product for deficiencies or causes of failures,

or to identify parts to be modified” [126]. Analyzability will be measured using a

modified implementation of the SIG Maintainability [115] quality model, which

considers Analyzability to be a continuous value falling in the range [0, 5].

M2.2: Testability – “degree of effectiveness and efficiency with which test criteria can

be established for a system, product or component and tests can be performed

to determine whether those criteria have been met” [126]. This will be measured

using a modified implementation of the SIG Maintainability Model [115] quality

model, which considers Testability to be a continuous value falling in the range

[0, 5].

197

M2.3: Modifiability – “degree to which a product or system can be effectively and

efficiently modified without introducing defects or degrading existing product

quality” [126]. This will be measured using a modified implementation of the

SIG Maintainability Model [115] quality model, which considers Modifiability to

be a continuous value falling in the range [0, 5].

M2.4: Modularity – “degree to which a system or computer program is composed of

discrete components such that a change to one component has minimal impact on

other components” [126]. This will be measured using a modified implementation

of the SIG Maintainability Model [115] quality model, which considers Modularity

to be a continuous value falling in the range [0, 5].

M2.5: Reusability – “degree to which an asset can be used in more than one system,

or in building other assets” [126]. This will be measured using a modified

implementation of the SIG Maintainability Model [115] quality model, which

considers Reusability to be a continuous value falling in the range [0, 5].

M2.6: Injection Severity (IS) – An indicator of the severity of grime affliction for a given

design pattern instance. This metric is measured using the mapping defined as

follows:

GS(p) =

GP (p) = 0% 0 (Control)

GP (p) ≤ 15% 1

GP (p) ≤ 30% 2

GP (p) ≤ 45% 3

GP (p) ≤ 60% 4

GP (p) ≤ 75% 5

198

Where GP (p) is the percentage of grime affecting a pattern instance. GP (p) is

calculated as the ratio of pattern instance members bound to a role defined by the

associated pattern RBML and affected by grime to the total number of pattern

instance members bound to a role. For a measured value of GS, v, where v ∈ N+

and v ∈ [0, 5], and is measured on an ordinal scale.

M2.7: Pattern Type (PT) – the pattern type name for a given pattern instance. This

metric is measured on a nominal scale, with each measured value being one of

the following: (Object) Adapter, Bridge, Chain of Responsibility, Command,

Composite, Decorator, Flyweight, Factory Method, Observer, Prototype, Proxy,

Singleton, State, Strategy, Template Method, or Visitor. These values are limited

to those reported by the Pattern4 tool.

M2.8: Injection Type (IT) – the grime type for the specific type of grime affecting a

given pattern instance. This metric is measured on a nominal scale, with each

measured value being one of the 26 grime type acronyms identified in Chapter 9.

M3.1: Technical Debt Principal – A measure of the man-months or monetary value of

the effort required to remediate (via refactoring) the issues identified as technical

debt within a software system. This metric is measured using Nugroho et al.’s

method as described in Section 2.2.3. This method measures TD Principal as a

continuous positive value with units in man-months.

M3.2: Technical Debt Interest – A measure of the effort to remediate the compounding

effect of unremediated technical debt on the maintenance of a software system.

This metric is measured using Nugroho et al.’s approach as described in Section

2.2.3. This method measures TD Interest as a continuous positive value with

units in man-months.

199

Using these basic metrics we next describe the experimental designs.

10.2.2 Experimental Design

This study is further decomposed into seven separate experiments. Each experiment

considers one of the corresponding quality attributes: five for the maintainability sub-

characteristics (Analyzability, testability, Modifiability, modularity, and Reusability) and

two for the technical debt components (principal and interest). Each experiment uses a

three-factor factorial design. This design was selected to accommodate for the potential

interactions between the independent variables. These variables include Pattern Type,

Injection Severity, and Injection Type. The dependent variable in each experiment is the

corresponding quality attributes. This design will require 2496 experimental subjects per

replication to account for each combination of pattern type, grime type, and injection severity

level.

We generate each replication’s pattern instances using the design pattern generation

technique described in Section 4.4.3. This approach frees us from any restrictions that a lack

of experimental subjects would impose. The following subsection describes the method used

to collect this data.

10.2.3 Data Collection

The following describes the data to be collected, the collection process, and how this

data is stored. For each instance under study, we extract the instance identifier, the grime

type injected, the grime severity level for the grime injected, the pattern type, and the

change in the quality attribute of concern (between pattern generation and grime injection).

The ReportGenerator extracts this information from the PatternInstance, Findings, and

Measures tables of the ArcDb. Once extracted, the ReportGenerator generates a table,

similar to the example shown in Table 10.1, with the following specifications:

200

Table 10.1: Example data collection table for grime and quality experiment.

ID PT IT IS ∆QA

0 Singleton DIPG 2 0.95

...
...

...
...

...

Figure 10.1: Grime effect on Quality data collection process.

• Each row of the table represents a single design pattern instance.

• The first column of the table is the identifier representing a specific pattern instance.

• The second column of the table represents the design pattern type.

• The third column of the table represents the type of grime injected.

• The fourth column of the table represents the severity rating for the injected grime.

• The fifth column of the table represents the change in value for the quality attribute

which is the subject of the experiment in question.

201

Figure 10.1 depicts an overview of the data collection process. This process follows

the path indicated by the numbers encircled in green, as follows. 1.) The Arc system

executes the Pattern Generator, 2.) which utilizes the ExperimentalConfig to define which

pattern types to generate and the number of instances needed. 3.) This process results in

generating a project per instance as a physical project folder. 4.) The workflow shifts to

the SoftwareInjector, which uses the ExperimentalConfig to determine the type and severity

of grime to inject. 5.) The SoftwareInjector copies the physical project and injects the

specified grime into this copy. 6.) Once injected, both copies of the project are then analyzed

using the standard java tooling. 7.) The standard java tooling (which includes the items

indicated by the “Java Tools” key on the diagram) stores its results in the ArcDb. 8.)

The SIG Maintainability Model quality analysis executes across all systems in the database

and stores its resulting measures in the ArcDb. 9.) The report generator uses the stored

measures to construct the data table according to the specification previously described.

These results, once gathered, are then analyzed (for each experiment separately) using the

following analysis procedures.

10.2.4 Analysis Procedures

This section describes the analysis models and procedures used for these experiments.

The analysis of these experiments will proceed from the data collection forward, as follows:

1. A size analysis conducted to determine the number of replications needed to achieve

the statistical power required.

2. Data collection occurs according to the data collection procedure.

3. Descriptive statistics are gathered and recorded based on the collected data.

4. Evaluate the ANOVA assumptions, as follows:

202

(a) Evaluate the Homogeneity of Variance assumption visually using a Residuals vs.

Fitted values plot and analytically using Levene’s Test [162].

(b) Evaluate the Normality of the sample population visually using a Normal Q-Q

plot and analytically using the Anderson-Darling normality test [14].

(c) For each experiment, following the data collection procedure, the data meets the

assumption that the samples are drawn independently of one another.

(d) For each experiment, following the data collection procedure, the observations are

sampled randomly and independently of one another.

5. If any violations of the assumptions are detected, attempts will be made to address

or explain these issues. If there are no violations, or they have been addressed, then

the ANOVA analysis will continue. If attempts to address violations are unsuccessful,

then a permutation F-test will be conducted instead.

6. If a significant difference is detected (F-test with p < 0.05), then the following will

occur:

(a) Evaluation of the interaction effects in the model. If present, the significant

interactions will be noted and the interactions plotted for further evaluation.

Additionally, if such interaction effects are detected, then we will not explore the

main effects further.

(b) In the case of a lack of significant interaction effects, the main effects will

be considered. Additionally, we will conduct a multiple comparison procedure

between the means for all treatment levels and the results recorded. Finally, the

execution of the pre-planned contrasts will be conducted and the results recorded.

We will conduct this analysis using the R Project for statistical computing version 4.1.1

and various R modules.

203

10.2.4.1 Size Analysis A design size analysis determines the number of replications

required to achieve the analytical power necessary to detect a difference. There are four

required values to conduct this analysis: (i) an estimate of the smallest relative distance

between means, (ii) an estimate of the standard deviation, (iii) the alpha level, and (iv) the

power level desired. The latter two are known, but we must estimate the former two based

on either prior knowledge or pilot study results.

Given the lack of prior knowledge, we have selected to conduct a small pilot study.

This study follows the same approach as the primary study. However, with the following

restrictions: (i) we will only generate instances for two patterns: Singleton and State, and

(ii) we will generate 156 instances per pattern (each injection type for each level of severity).

The data collected will be enough to estimate both the smallest relative distance between

means and the standard deviation. We will conduct the design size analysis and generate

the pattern instances for each experiment using this information.

10.2.4.2 ANOVA/Permutation F-test For our design and subsequent analysis we have

elected to utilize an ANOVA model (and if not possible a permutation F-test). The model

for analysis is as follows:

yijkl(m) = µ+ τi + βj + γk + (τβ)ij + (τγ)ik + (βγ)jk + (τβγ)ijk + εijkl

In this model:

• yijkl represents quality attribute (QA) of concern

• τi represents the effect of the ith pattern type (PT)

• βj the effect of the jth injection type (IT)

• γk the effect of the kth injection severity (IS)

204

• (τβ)ij, represents the effects of the two-factor interaction of PT and IT

• (τγ)ik, represents the effects of the two-factor interaction of PT and IS

• (βγ)jk, represents the effects of the two-factor interaction of IT and IS

• (τβγ)ijk, represents the effects of the three-factor interaction of PT, IT, and IS

• εijkl represents the random error of the lth observation of the (i, j, k)th treatment

Using this model, the ANOVA/permutation F-test analysis determines only if there is any

difference in mean change in the quality attribute of concern due to any treatment.

10.2.4.3 Interaction Effect The evaluation of the interaction effects will first determine

whether there is any evidence of a three-way interaction. If this is the case, then the

remaining interaction effects, main effects, multiple comparisons, and pre-planned contrasts

will not be considered. If there is weak or no evidence of such an interaction, we will review

each two-factor interaction. Next, suppose there is evidence suggesting the presence of two-

factor interactions. In that case, we will only consider main effects, multiple comparisons,

or pre-planned contrasts for those effects not contributing to interactions with supporting

evidence. Finally, if weak or no evidence supports any interactions, we will move forward in

considering the main effects, multiple comparisons, and pre-planned contrasts as described

in the following subsections.

10.2.4.4 Main Effects, Multiple Comparisons and Pre-planned Contrasts The main

effects, τi, βj, and γk, representing the effect that pattern type, injection type, and injection

severity have on the mean change in quality attribute, will be evaluated as part of the

ANOVA/Permutation F-test. If there is strong evidence for the main effects, we will execute

multiple comparison procedures and pre-planned contrasts. In such a case, we will execute

multiple comparisons with a Bonferroni corrected p-value [35]. Except for injection severity,

205

we will perform an all-pairs comparison. For injection severity we will utilize a comparison

versus control approach (such as Dunnett’s test [68] or Steel’s test [249]). Evaluating these

multiple comparisons will provide detailed insight into the specific differences in the effects

of different grime types and grime severity levels. Thus, providing deeper insights into

answering questions RQ2.1 – RQ2.2 and RQ3.1 – RQ3.2.

To answer questions RQ2.3 and RQ3.3 we will conduct a series of contrast analyses

to evaluate the following statistical hypotheses related to the research questions. We derive

these contrasts from linear combinations of the mean difference of each specific grime type

used as a treatment. Each combination provides insight into the relative effects grime

subtypes and categories have on the mean change in the quality attribute. In addition,

these combinations provide a relative ranking between subtypes within a category and then

between categories.

10.2.5 Evaluation of Validity

In any empirical inquiry, we are concerned with the reliability and validity of our

methods. In this study, we ensure the reliability and validity of the tools and methods used

in the experiment: We selected third-party tools known to be of high quality and relatively

bug-free. We have thoroughly tested the tools we developed at the unit, integration, and

system level. We include assurance of the validity of the methods as part of the process.

Specifically, for each analysis technique used, we validate the assumptions before executing

the analysis. The pilot study used to evaluate design size serves to test the data collection

method and identify reliability or validity issues in the process. We will correct any issues

identified during the pilot study before commencing the complete study.

206

Figure 10.2: Data collection execution process.

10.3 Execution

The data was collected using the process described in Section 10.2.3. In addition to

the process defined, we made the following modifications. First, to finish the experiments

in a reasonable amount of time, we spread the execution across multiple machines. The

exact process for this is depicted in Figure 10.2 and follows the process identified by the

numbers encircled in green. 1.) We developed a small tool to generate and separate the

experimental configurations for deployment across multiple machines. The Experimental

Control Generator performs this function by first generating all experimental configurations

and then randomizing this list. The Experimental Control Generator subdivides this list

based on information from 2.) the provided ExGen Config which specifies the number of

machines, cores per machine, and parts per machine for execution. 3.) The Experimental

Control Generator combines this data with the experiment executor and several scripts (used

to facilitate automated execution and database management) into an Experiment Execution

Package. 4.) We distribute these packages to several execution machines. During the

execution of these experiments, the number of available machines ranged from 6 to 30 desktop

207

Table 10.2: Size analysis results.

Characteristic α Power Effect Size df Rep Size Size Reps

Analyzability 0.05 0.95 0.2255272 1875 2496 5425 3

Testability 0.05 0.95 0.0863064 1875 2496 29506 12

Modifiability 0.05 0.95 0.1695395 1875 2496 8536 4

Modularity 0.05 0.95 0.1679058 1875 2496 8661 4

TD Principle 0.05 0.95 0.2456884 1875 2496 4816 2

TD Interest 0.05 0.95 0.1980468 1875 2496 6602 3

computers within a single computer lab. 5.) As experimental packages completed execution,

a script collected their results and stored them for later aggregation. 6.) The Results

Aggregator performs the aggregation combining all results from multiple executions 7.) into

a single results CSV file for analysis.

10.4 Analysis Results

This section summarizes the collected data and describes the results of our analysis.

This section contains eight subsections: first, we describe the size analysis results, identifying

the number of replications needed in the subsequent experiments, and the remaining seven

sections detail the results of each experiment conducted.

10.4.1 Size Analysis

We conducted a pilot study to determine the number of replications necessary to achieve

the required statistical power for the hypothesis tests in each of the experiments. This study

used only two patterns (Singleton and State) for each of the six levels of Injection Severity

and all 26 Injection Types. This combination led to the generation of 312 pattern instances.

208

Table 10.3: Summary of Analyzability data.

Characteristic Min Median Mean Max SD

∆Analyzability -1.0382265 -0.0038076 -0.1226307 0.0 0.2772369

These instances were analyzed using the same data collection approach defined for the actual

experiments, and the results were collected. These results were analyzed to determine the

number of replications needed for each experiment to achieve 95% power when considering

the three-way interaction effects. To determine this, we used the G * Power 3.1 [75]. Table

10.2 depicts the results of this analysis.

10.4.2 Analyzability

This subsection describes the results of the Analyzability analysis. We subdivided the

analysis into a subsection describing the data and descriptive statistics, and a subsection

describing hypothesis testing.

10.4.2.1 Descriptive Statistics This section presents the results of the Analyzability

experiment using descriptive statistics and plots. First, we show the summary of the Change

in Analyzability (the dependent variable) in Table 10.3. The table shows the basic statistics

across the 7,488 observations. This table shows that across all observations, the most

significant change in Analyzability (the min value in the table) is negative and had a value of

-1.0382265, the smallest change in Analyzability (the max value in the table) is 0.0, and the

mean change in Analyzability is -0.1226307. However, given the distribution of the values

being highly skewed to the right as depicted by the histogram in Figure 10.3, the median

value of -0.0038076 provides a better measure of the centrality of the data. Combining all

of this with the standard deviation of 0.2772369, we know the following about this data:

i) the vast majority of the observations showed no change to Analyzability; ii) of those

209

Histogram for Change in Analyzability

Change in Analyzability

F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 10.3: Histogram of the change in Analyzability.

observations that showed any change in Analyzability, it is negative and relatively small;

and iii) there were some observations which show significant changes in Analyzability. To

better understand how this data is distributed, in the context of the independent variables,

we constructed two plots: the first is a table plot (see Figure 10.4), and the second is a

scatterplot (see Figure 10.5).

Figure 10.4 depicts a table plot of the dependent variable and each of the independent

variables. Each column of this plot represents a single variable, while each plot row represents

a sample of the data. The first column presents a histogram of the Change in Analyzability

(sigAnalyzability) separated into 100 bins containing 75 observations. The remaining

columns show the values of Pattern Type (PTFactor), Injection Type (ITFactor), and

Injection Severity (ISFactor) for the 75 values for each row of the Change in Analyzability.

This data view allows us to see the distribution of the data and any interesting patterns that

210

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins: 100

objects:
7,488

 75 (per bin)

sigAnalyzability

−1.0 0.0

PTFactor

Adapter
...
CoR
...
Prototype
...
Template M.

missing

ITFactor

DEPG
...
MPECG
...
PEAG
...
TEEG

missing

ISFactor

0
1
2
3
4
5

missing

Figure 10.4: Table plot of Analyzability data.

may exist across the columns.

In this plot, we initially see that approximately 75% of the change in Analyzability

is very close to zero. At approximately the 75% mark, the data begins visibly deviating

from 0.0. This deviation markedly increases at approximately 85%, ending in a value of

-1.0382265. Additionally, when considering the Injection Severity, we can see that the only

time Injection Severity is 0, the corresponding change in Analyzability is zero. This finding

makes sense as this is the only time no grime is injected. Therefore, we should expect to see

zero change in Analyzability for this level of Injection Severity. The next exciting piece of

information that stands out in this plot is that apparently, only a few Injection Types are

responsible for the largest changes in Analyzability. As a final note about this plot, we can

see that regardless of the value of the Change in Analyzability, there appears to be little

change in the distribution of the Pattern Type data.

211

Adapter

Bridge

Command

Composite

CoR

Decorator

Factory M.

Flyweight

Observer

Prototype

Proxy

Singleton

State

Strategy

Template M.

Visitor

−1.00 −0.75 −0.50 −0.25 0.00
Change in Analyzability (rating)

P
at

te
rn

 T
yp

e

Injection Type

DEPG

DESG

DIPG

DISG

IEPG

IESG

IIPG

IISG

MPECG

MPEUG

MPICG

MPIUG

MTECG

MTEUG

MTICG

MTIUG

PEAG

PECG

PEEG

PERG

PICG

PIG

PIRG

TEAG

TEEG

TIG

Scatterplot of Change in Analyzability by Pattern Type

Figure 10.5: Scatterplot of the Change in Analyzability and Pattern Type.

Figure 10.5 shows the scatterplot of the Change in Analyzability by Pattern Type with

each point colored according to the Injection Type. This plot shows several key things. First,

negative changes occur across all Pattern Types and all Injection Types. However, we can

see that the largest magnitude of change is the injection of primarily Organizational Grime.

Furthermore, these changes are separated into two bands. First, Package Organizational

Grime has the largest magnitude of change ranging from -0.75 to approximately -1.0. Next,

the changes due to Modular Organization Grime range from -0.125 to -0.875. The remaining

small negative changes are primarily due to Class and Modular Grime.

10.4.2.2 Hypothesis Testing Initially, we begin the analysis by determining if using

the parametric ANOVA approach is appropriate. We determined this by validating the

fundamental assumptions of ANOVA. As noted above, the two fundamental assumptions we

are concerned with are the normality and homogeneity of variances assumptions.

212

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−
0.

5
0.

0
0.

5

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
5459

311

7331

−4 −2 0 2 4

−
5

0
5

10

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
5459

311

7331

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

0.
0

1.
0

2.
0

3.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location

5459 3117331

−
10

−
5

0
5

10

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Adapter CoR Flyweight Proxy Strategy
PTFactor :

Constant Leverage:
 Residuals vs Factor Levels

5459

311

7331

Figure 10.6: Analyzability diagnostic plots.

Normality Assumption To evaluate this assumption, we plotted the ANOVA model, as

depicted in Figure 10.6. The pertinent plot here is the “Normal Q-Q” Plot in the upper right

quadrant. Here we see deviations from Normal in the tails of the data, which is a strong

indicator of a violation of the normality assumption. This evidence is further confirmed

using the Anderson-Darling normality test [14] as provided by the ad.test function in the

nortest1 package for R. This test assumes that we have a set of observations sampled from

some continuous distribution, F (x), and that the measurement scale is at least ordinal. If

these assumptions are met, then we can compare F (x) to a hypothesized distribution, F ∗(x),

such as the normal distribution in this case. The null and alternative hypotheses for such a

two-sided test are as follows:

1https://cran.r-project.org/package=nortest

https://cran.r-project.org/package=nortest

213

H0 : F (x) = F ∗(X)

HA : F (x) 6= F ∗(X)

The results of this test (A = 1812.5, p < 2.2e−16) provides strong evidence to reject the null

hypothesis and further confirming the violation of the normality assumption.

Homogeneity of Variances Assumption We validated this assumption using a similar

process as the Normality assumption. We again look to Figure 10.6, focusing on the “Residual

vs. Fitted” plot in the upper-left quadrant. This plot indicates that there is a violation of

the assumption. To analytically confirm this, we executed Levene’s Test for Homogeneity

of Variance [162] (as provided by the car package in R [89]). The null and alternative

hypotheses for this test are as follows:

H0 : σ2
1 = σ2

2 = . . . = σ2
n

HA : σ2
i 6= σ2

j for some i 6= j

The results (F (2495, 4992) = 1.6523e26, p < 2.2e−16) of this test provide strong evidence to

reject the null hypothesis that the variances are the same. These results further confirming

this assumption has been violated.

Permutation F-Test Analysis The results of the assumption validation steps lead to

the conclusion that either we transform the data or we use a permutation F-test approach

(according to our analytical approach defined above in Section 10.2.4). After several attempts

to adjust for the violations, we opted to conduct the permutation F-test approach. The

permutation F-Test tests the following null and alternative hypotheses:

214

IESG IIPG IISG

DEPG DIPG DISG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.7: Analyzability Class Grime interactions part 1.

H1,0 : µ111 = µ112 = . . . = µijk

H1,1 : µijk 6= µi′j′k′

Where µijk represents the mean change in Analyzability for the ith Pattern Type, jth

Injection Type, and kth Injection Severity. If the evidence is strong enough to reject the

null hypothesis, H1,0, then we will evaluate whether we should consider the main or the

interaction effects. To test this, we used the lmp function of the lmPerm2 package for R.

The overall results of this test (F (2495, 4992) = 23.68, p < 2.2e−16) indicate strong evidence

to reject the null hypothesis that there is no difference in the mean change in Analyzability.

2https://cran.r-project.org/package=lmPerm

https://cran.r-project.org/package=lmPerm

215

DESG IEPG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.2

−0.1

0.0

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.8: Analyzability Class Grime interactions part 2.

TEAG TEEG TIG

PEAG PEEG PIG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−0.03

−0.02

−0.01

0.00

−0.03

−0.02

−0.01

0.00

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.9: Analyzability Modular Grime interactions.

216

MTICG MTIUG

MPICG MPIUG
A

da
pt

er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.75

−0.50

−0.25

0.00

−0.75

−0.50

−0.25

0.00

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.10: Analyzability Modular Organizational Grime interactions part 1.

MTECG MTEUG

MPECG MPEUG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.04

−0.03

−0.02

−0.01

0.00

−0.04

−0.03

−0.02

−0.01

0.00

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.11: Analyzability Modular Organizational Grime interactions part 2.

217

PECG PICG
A

da
pt

er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−1.00

−0.75

−0.50

−0.25

0.00

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.12: Analyzability Package Organizational Grime interactions.

PERG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.00075

−0.00050

−0.00025

0.00000

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.13: Analyzability interactions for the PERG subtype.

218

PIRG
A

da
pt

er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.015

−0.010

−0.005

0.000

Pattern Type

C
ha

ng
e

in
 A

na
ly

za
bi

lit
y Injection

Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.14: Analyzability interactions for the PIRG subtype.

Interaction Effects With the knowledge that a difference in the mean Change in

Analyzability exists between two or more treatment combinations, we continue by considering

any significant interactions. We begin by testing the following hypotheses:

H2,0 : (τβγ)111 = (τβγ)112 = . . . = (τβγ)ijk

H2,1 : at least one (τβγ)ijk 6= (τβγ)i′j′k′

In this case, there is strong evidence (p < 2.2e−16) to reject H2,0 that there is no difference

in the mean change in Analyzability for each level of the three-way interaction effect.

With this in mind, we will consider a graphical analysis of these interactions. To plot

these interactions, we subdivided into grime categories: Class Grime, Modular Grime,

and Organizational Grime (which we further split into Package Organizational Grime and

Modular Organizational Grime). Each grime category plot contains a matrix of subplots

(one per grime type in the category). The y-axis is the change in Analyzability, the x-axis

219

is the design pattern type, and the points plotted are the values for each injection severity.

We begin with the plots for Class Grime.

Figures 10.7 and 10.8 depict the interaction effects associated with the class grime

subtypes. Each subplot in this figure shows that as injection severity increases, there is a

corresponding decrease in the change in Analyzability across each pattern type. We will

note that for the Bridge, Decorator, Observer, Singleton, and Visitor patterns, there is a

more pronounced dip in the change. Additionally, for DESG and IEPG, there are significant

dips in the Change in Analyzability for the Singleton pattern. Specifically for DESG when

Injection Severity is 3 or 4 and for IEPG when Injection Severity is 5. Given these results,

we now shift to the interaction plots for the Modular Grime category.

Figure 10.9 depicts the interaction effects associated with the modular grime subtypes.

Like the Class Grime subtypes, we can see an apparent corresponding decrease in the Change

in Analyzability across all pattern types as injection severity increases. A similar relationship

appears to be true for each subtype of modular grime, but there is a stark contrast between

PIG and the other forms of Modular Grime. Additionally, we can see similar dips in the

Change in Analyzability for Bridge, Decorator, Observer, Singleton, and Visitor patterns as

we did in Class Grime.

Figures 10.10 and 10.11 depict the interaction effects associated with modular organi-

zational grime subtypes. In Figure 10.11, for MPECG, MTECG, and MTEUG, we see the

familiar trend of a decrease in the Change in Analyzability as Injection Severity increases

across pattern types. Furthermore, we also can see that there are pronounced dips at the

Bridge, Decorator, Observer, Singleton, and Visitor design patterns. One might question how

a Singleton pattern is affected by Organizational Grime given that Singleton instances are

typically housed in a single file. Because Organizational Grime concerns the relationships

between packages, a Singleton instance can cause cycles between packages (MPECG and

MTECG), induce instability between packages (MTEUG) via couplings to classes in other

220

Table 10.4: Summary of Testability data.

Characteristic Min Median Mean Max SD

∆Testability -1.459066 -0.005952 -0.248710 0.0 0.5072027

packages and therefore reducing overall quality. However, in Figure 10.10 there is significant

variability in the change between levels of Injection Severity depending on the pattern type

for MPICG, MPIUG, MTICG, and MTIUG. It appears that for MPICG that regardless of

the pattern type and injection severity level, the effect is nearly the same.

Finally, Figures 10.12, 10.13, and 10.14 depict the interaction effects associated with

package organizational grime. For PECG and PICG subtypes, depicted in Figure 10.12, we

note that there is only small variability across design pattern types for Injection Severity

levels of 3 or more. The primary variability in these grime types occurs for Injection Severity

levels 1 and 2. When considering PERG, as depicted in Figure 10.13, we note that for

Injection Severity levels 3 and above, there is no discernible variability across patterns, but

for levels 1 and 2 pattern type seems to make some difference, but the actual difference is

extremely small (approximately -0.00055 to -0.00080 on average). Finally, when considering

PIRG, as depicted in Figure 10.14, the familiar interaction pattern returns. This figure shows

a corresponding decrease in Change in Analyzability across patterns as Injection Severity

increases. Again, we also note that there are discernible dips at the Bridge, Decorator,

Observer, Singleton, and Visitor design pattern types.

10.4.3 Testability

This subsection describes the results of the Testability analysis. We subdivided the

analysis into a subsection describing the data and descriptive statistics, and a subsection

describing hypothesis testing.

221

Histogram for Change in Testability

Change in Testability

F
re

qu
en

cy

−1.5 −1.0 −0.5 0.0

0
40

36
80

72
12

10
8

16
14

4

−1.5 −1.0 −0.5 0.0

Figure 10.15: Histogram of the change in Testability.

10.4.3.1 Descriptive Statistics This section presents the results of the Testability

experiment using descriptive statistics and plots. First, we show the summary of the Change

in Testability (the dependent variable) in Table 10.4. The table shows the basic statistics

across the 19,968 observations. This table shows that across all observations, the most

significant change in Testability (the min value in the table) is negative and has a value of

-1.459066, the smallest change in Testability (the max value in the table) is 0.0, and the

mean change in Testability is -0.248710. However, given the distribution of the values being

bimodal and highly skewed to the right as depicted by the histogram in Figure 10.15, the

median value of -0.005952 provides a better measure of the centrality of the data. Combining

all of this with the standard deviation of 0.5072027, we know the following about this data: i)

the vast majority of the observations showed no change to Testability; ii) of those observations

that showed any change in Testability, it is negative and relatively small; and iii) there were

222

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins: 100

objects:
19,968

 200 (per bin)

sigTestability

−1.0 −0.5 0.0

PTFactor

Adapter
...
CoR
...
Prototype
...
Template M.

missing

ITFactor

DEPG
...
MPECG
...
PEAG
...
TEEG

missing

ISFactor

0
1
2
3
4
5

missing

Figure 10.16: Table plot of Testability data.

some observations which show significant changes in Testability. To better understand how

this data is distributed, in the context of the independent variables, we constructed two

plots: the first is a table plot (see Figure 10.16), and the second is a scatterplot (see Figure

10.17).

Figure 10.16 depicts a table plot of the dependent and each of the independent variables.

Each column of this plot represents a single variable, while each plot row represents a

sample of the data. The first column presents a histogram of the Change in Testability

(sigTestability) separated into 100 bins containing 200 observations. The remaining columns

show the values of Pattern Type (PTFactor), Injection Type (ITFactor), and Injection

Severity (ISFactor) for the 75 values for each row of the Change in Testability. This data

view allows us to see the distribution of the data and any interesting patterns that may exist

across the columns.

223

Adapter

Bridge

Command

Composite

CoR

Decorator

Factory M.

Flyweight

Observer

Prototype

Proxy

Singleton

State

Strategy

Template M.

Visitor

−1.5 −1.0 −0.5 0.0
Change in Testability (rating)

P
at

te
rn

 T
yp

e

Injection Type

DEPG

DESG

DIPG

DISG

IEPG

IESG

IIPG

IISG

MPECG

MPEUG

MPICG

MPIUG

MTECG

MTEUG

MTICG

MTIUG

PEAG

PECG

PEEG

PERG

PICG

PIG

PIRG

TEAG

TEEG

TIG

Scatterplot of Change in Testability by Pattern Type

Figure 10.17: Scatterplot of the Change in Testability and Pattern Type.

In this plot, we initially see that approximately 75% of the change in Testability is

very close to zero. At approximately the 75% mark, the data begins visibly deviating from

0.0. This deviation markedly increases at approximately 85%, ending in a value of -1.459066.

Additionally, when considering the Injection Severity, we can see that the only time Injection

Severity is 0, the corresponding change in Testability is zero. This finding makes sense as

this is the only time no grime is injected. Therefore, we should expect to see zero change

in Testability for this level of Injection Severity. The next exciting piece of information that

stands out in this plot is that apparently, only a few Injection Types are responsible for the

largest changes in Testability. Finally, we see that regardless of the value of the Change in

Testability, there appears to be little change in the distribution of the Pattern Type data.

Figure 10.17 shows the scatterplot of the Change in Testability by Pattern Type colored

according to the Injection Type. This plot shows several key things. First, negative changes

224

occur across all Pattern Types and all Injection Types. However, we can see that the

largest magnitude of change is the injection of primarily Modular Organizational Grime.

The changes due to Modular Organization Grime ranges from approximately -0.125 to

approximately -1.5. The remaining small negative changes are primarily due to Class,

Modular, and Package Organizational Grime. With this basic understanding of the data, we

next discuss data set reduction and hypothesis testing.

10.4.3.2 Data Set Reduction The initial data collection for this experiment collected

12 replicates consisting of a total of 29952 observations. However, due to the long processing

time, this was reduced to 8 replicates of 19968 total observations.

10.4.3.3 Hypothesis Testing Initially, we begin the analysis by determining if using the

parametric ANOVA approach is appropriate by validating its fundamental assumptions. As

noted in Section 10.2.4, the two fundamental assumptions we are concerned with are the

normality and homogeneity of variances assumptions.

Normality Assumption To evaluate this assumption, we plotted the ANOVA model, as

depicted in Figure 10.18. The pertinent plot here is the “Normal Q-Q” Plot in the upper

right quadrant. Here we see deviations from normal in the tails of the data, which is a strong

indicator of a violation of the normality assumption. This evidence is further confirmed using

the Anderson-Darling normality test. The results of this test (A = 5069.2, p < 2.2e−16)

provides strong evidence to reject the null hypothesis and further confirming the violation

of the normality assumption.

Homogeneity of Variances Assumption This assumption is evaluated using a similar

process as the Normality assumption. We again look to Figure 10.18, focusing on the

“Residual vs. Fitted” plot in the upper-left quadrant. This plot indicates that there is

225

−1.5 −1.0 −0.5 0.0

−
0.

5
0.

0
0.

5

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
573882342456

−4 −2 0 2 4

−
10

0
5

15

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
573882342456

−1.5 −1.0 −0.5 0.0

0
1

2
3

4

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location

573882342456

−
15

−
5

5
15

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Adapter CoR Flyweight Proxy Strategy
PTFactor :

Constant Leverage:
 Residuals vs Factor Levels
57388234 2456

Figure 10.18: Testability diagnostic plots.

a violation of the assumption. To analytically confirm this, we executed Levene’s Test for

Homogeneity of Variance. The results (F (2495, 17472) = 8.7427, p < 2.2e−16) of this test

provides strong evidence to reject the null hypothesis that the variances are the same. These

results further confirming this assumption has been violated.

Permutation F-Test Analysis The results of the assumption validation steps lead to

the conclusion that either we need to transform the data or use a permutation F-test

approach (according to our analytical approach defined above in Section 10.2.4)). After

several attempts to adjust for the violations, we opted to conduct the permutation F-test

approach. The overall results of this test (F (2495, 17472) = 627.8, p < 2.2e−16) indicates

strong evidence to reject the null hypothesis that there is no difference in the mean change

in Testability.

226

IIPG IISG

DISG IEPG IESG

DEPG DESG DIPG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−0.08

−0.06

−0.04

−0.02

0.00

−0.08

−0.06

−0.04

−0.02

0.00

−0.08

−0.06

−0.04

−0.02

0.00

Pattern Type

C
ha

ng
e

in
 T

es
ta

bi
lit

y

Injection
Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.19: Testability interaction plots for class grime injection.

TEAG TEEG TIG

PEAG PEEG PIG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−0.04

−0.03

−0.02

−0.01

0.00

−0.04

−0.03

−0.02

−0.01

0.00

Pattern Type

C
ha

ng
e

in
 T

es
ta

bi
lit

y

Injection
Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.20: Testability interaction plots for modular grime injection.

227

MTECG MTICG MTIUG

MPECG MPICG MPIUG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−1.0

−0.5

0.0

−1.0

−0.5

0.0

Pattern Type

C
ha

ng
e

in
 T

es
ta

bi
lit

y

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.21: Testability interaction plots for modular organizational grime injection.

MTEUG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.03

−0.02

−0.01

0.00

Pattern Type

C
ha

ng
e

in
 T

es
ta

bi
lit

y

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.22: Testability interaction plots for MTEUG subtype.

228

PECG PICG PIRG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−0.06

−0.04

−0.02

0.00

Pattern Type

C
ha

ng
e

in
 T

es
ta

bi
lit

y

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.23: Testability interaction plots for package organizational grime injection.

PERG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.00100

−0.00075

−0.00050

−0.00025

0.00000

Pattern Type

C
ha

ng
e

in
 T

es
ta

bi
lit

y

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.24: Testability interaction plots for PERG subtype.

229

Interaction Effects With the knowledge that a difference in the mean change in

Testability exists between two or more treatment combinations, we continue by considering

significant interactions. In this case, there is strong evidence (p < 2.2e−16) to reject H2,0

that there is no difference in the mean change in Testability for each level of the three-way

interaction effect. With this in mind, we consider a graphical analysis of these interactions.

To plot these interactions, we subdivided them into grime categories: Class Grime, Modular

Grime, and Organizational Grime. Each grime category plot contains a matrix of subplots

(one per grime type in the category). The subplot matrix contains interaction plots. The

y-axis is the change in Testability, the x-axis is the design pattern type, and the points

plotted are the values for each injection severity. We begin with the plots for Class Grime.

Figure 10.19 depicts the interaction effects associated with the class grime subtypes.

Each subplot in this figure shows that as injection severity increases, there is a corresponding

decrease in the change in Testability across each pattern type. We will note that there is

a more pronounced dip in the change for the Bridge, Decorator, Observer, Singleton, and

Visitor patterns. Given these results, we now shift to the interaction plots for the Modular

Grime category.

Figure 10.20 depicts the interaction effects associated with the modular grime subtypes.

Similar to the Class Grime subtypes, we see an apparent corresponding decrease in the

change in Testability across all pattern types as injection severity increases. This relationship

appears to be true for each subtype of modular grime, but there is a stark contrast between

PIG and the other forms of Modular Grime. Additionally, we can see similar dips in the

change in Testability for Bridge, Decorator, Observer, Singleton, and Visitor patterns as we

did in Class Grime.

Figures 10.21 and 10.22 depict the interaction effects associated with modular organi-

zational grime subtypes. As depicted in Figure 10.21, we can see an apparent corresponding

decrease in the change in Testability as Inject Severity increases across all pattern types.

230

Table 10.5: Summary of Modifiability data.

Characteristic Min Median Mean Max SD

∆Modifiability -1.36 0.0 -0.01526 0.49121 0.1230359

The difference here is that there is significant variability in the change between levels of

Injection Severity depending on the pattern type for MPECG, MPIUG, MTECG, MTICG,

and MTIUG. It appears that for MPICG, as depicted in Figure 10.22 the familiar pattern of

decreasing Change in Testability as Injection Severity increases across Pattern Types. We

can also see dips for the Bridge, Decorator, Observer, Singleton, and Visitor patterns.

Finally, Figures 10.23 and 10.24 depict the interaction effects associated with package

organizational grime. As shown in Figure 10.23, there is a corresponding decrease in the

Change in Testability as the Injection Severity level increases across each Pattern Type.

Again, we also note that there are dips in the effect level for the Bridge, Decorator, Observer,

Singleton, and Visitor patterns. PERG, on the other hand, as shown in Figure 10.24 shows

minimal variability in the Change in Testability for Injection Severity levels of 3 or higher,

but does show some for levels 1 and 2.

10.4.4 Modifiability

This subsection describes the results of the Modifiability analysis. We subdivided the

analysis into a subsection describing the data and descriptive statistics, and a subsection

describing hypothesis testing.

10.4.4.1 Descriptive Statistics This section presents the results of the Modifiability

experiment using descriptive statistics and plots. First, we show the summary of the Change

in Modifiability (the dependent variable) in Table 10.5. The table shows the basic statistics

across the 9,984 observations. This table suggests that across all observations, the change

231

Histogram for Change in Modifiability

Change in Modifiability

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5

0
20

00
40

00
60

00
80

00

Figure 10.25: Histogram of the change in Modifiability.

in Modifiability ranges between -1.36 and 0.49121, and the mean change in Modifiability is

-0.01526. However, given the distribution of the values being skewed to the right as depicted

by the histogram in Figure 10.25, the median value of -0.005952 provides a better measure

of the centrality of the data. Combining all of this with the standard deviation of 0.1230359,

we know the following about this data: i) the vast majority of the observations showed no

change to Modifiability; ii) of those observations that showed any change in Modifiability, it

can be either negative or positive and that the magnitude is greater in the negative direction;

and iii) There were some observations which show significant changes in Modifiability. To

better understand how this data is distributed, in the context of the independent variables,

we constructed two plots: the first is a table plot (see Figure 10.26), and the second is a

scatterplot (see Figure 10.27).

Figure 10.26 depicts a table plot of the dependent and each of the independent variables.

232

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins: 100

objects:
9,984
 100 (per bin)

sigModifiability

−1.0 −0.5 0.0

PTFactor

Adapter
...
CoR
...
Prototype
...
Template M.

missing

ITFactor

DEPG
...
MPECG
...
PEAG
...
TEEG

missing

ISFactor

0
1
2
3
4
5

missing

Figure 10.26: Table plot of Modifiability data.

Each column of this plot represents a single variable, while each plot row represents a

sample of the data. The first column presents a histogram of the Change in Modifiability

(sigModifiability) separated into 100 bins each containing 100 observations. The remaining

columns show the values of Pattern Type (PTFactor), Injection Type (ITFactor), and

Injection Severity (ISFactor) for the 100 values for each row of the Change in Modifiability.

This data view allows us to see the distribution of the data and any interesting patterns that

may exist across the columns.

In this plot, we initially see that approximately 5% of the change in Modifiability is

positive, 5% is negative, and the remaining is zero. Between the 0% and approximately

5% marks the change in Modifiability is positive and appears to related to only a subset of

the patterns, but there does not appear to be any relation to any of the other independent

variables. Additionally, the last approximately 5% of the data indicates a negative change

233

Adapter

Bridge

Command

Composite

CoR

Decorator

Factory M.

Flyweight

Observer

Prototype

Proxy

Singleton

State

Strategy

Template M.

Visitor

−1.0 −0.5 0.0 0.5
Change in Modifiability (rating)

P
at

te
rn

 T
yp

e

Injection Type

DEPG

DESG

DIPG

DISG

IEPG

IESG

IIPG

IISG

MPECG

MPEUG

MPICG

MPIUG

MTECG

MTEUG

MTICG

MTIUG

PEAG

PECG

PEEG

PERG

PICG

PIG

PIRG

TEAG

TEEG

TIG

Scatterplot of Change in Modifiability by Pattern Type

Figure 10.27: Scatterplot of the Change in Modifiability and Pattern Type.

in Modifiability and appears to be related to a subset of Injection Types but not to either

the Pattern Type nor the Injection Severity. The remaining 90% of the data has a value of

zero. This data is the only data where the Injection Severity level of 0 occurs, but at the

same time all other Injection Severity levels, Pattern Types, and Injection Types also affect

a change of zero.

Figure 10.27 shows the scatterplot of the Change in Modifiability by Pattern Type, with

each point colored according to the Injection Type. This plot shows several key things. First,

negative changes occur across all Pattern Types and all Injection Types. Furthermore, we

can see that the negative changes are due to primarily Organizational Grime injection. The

largest magnitude of negative change focuses on the Visitor, Singleton, Prototype, Observer,

and Decorator patterns and is due to Modular Organization Grime. However, the negative

changes are due to Package Organizational Grime (ranging from approximately -0.4375 to

234

−0.6 −0.4 −0.2 0.0 0.2

−
1.

0
0.

0
1.

0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
4974

74564973

−4 −2 0 2 4

−
10

0
5

15

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
4974

74564973

−0.6 −0.4 −0.2 0.0 0.2

0
1

2
3

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location

4974 74564973

−
15

−
5

5
15

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Adapter CoR Flyweight Proxy Strategy
PTFactor :

Constant Leverage:
 Residuals vs Factor Levels

4974

74564973

Figure 10.28: Modifiability diagnostic plots.

approximately -0.75) and occur across all pattern types except Prototype. Second, positive

changes occur due to the injection of primarily Class and Modular grime. However, these

changes only affect the Visitor, Singleton, Prototype, Observer, Decorator, and the Factory

Method patterns.

10.4.4.2 Hypothesis Testing Initially, we begin the analysis by determining if using

the parametric ANOVA approach is appropriate. We determined this by validating the

fundamental assumptions of ANOVA. As noted above in Section 10.2.4, the two fundamental

assumptions we are concerned with are the normality and homogeneity of variances

assumptions.

Normality Assumption To evaluate this assumption, we plotted the ANOVA model, as

depicted in Figure 10.28. The pertinent plot here is the “Normal Q-Q” Plot in the upper right

235

quadrant. Here we see deviations from Normal in the tails of the data, which is a strong

indicator of a violation of the normality assumption. This evidence is further confirmed

using the Anderson-Darling normality test. The results of this test (A = 3211, p < 2.2e−16)

provides strong evidence to reject the null hypothesis and further confirming the violation

of the normality assumption.

Homogeneity of Variances Assumption This assumption is evaluated using a similar

process as the Normality assumption. We again look to Figure 10.28, focusing on the

“Residual vs. Fitted” plot in the upper-left quadrant. This plot indicates that there is

a violation of the assumption. To analytically confirm this, we executed Levene’s Test for

Homogeneity of Variance. The results (F (2495, 7488) = 2.5321, p < 2.2e−16) of this test

provides strong evidence to reject the null hypothesis that the variances are the same. These

results further confirming this assumption has been violated.

Permutation F-Test Analysis The assumption validation steps result in the conclusion

that we must either transform the data or use a permutation F-test approach. After

several attempts to adjust for the violations, we moved forward with the permutation F-test

approach. The overall results of this test (F (2495, 7488) = 4.636, p < 2.2e−16) indicates

strong evidence to reject the null hypothesis that there is no difference in the mean change

in Modifiability.

Interaction Effects With the knowledge that a difference in the mean change in

Modifiability exists between two or more treatment combinations, we continue by considering

any significant interactions. In this case, there is strong evidence (p < 2.2e−16) to reject

H2,0 that there is no difference in the mean change in Modifiability for each level of the

three-way interaction effect. With this in mind, we will consider a graphical analysis of

these interactions. To plot these interactions, we subdivided them into grime categories:

236

IISG

IEPG IESG IIPG

DEPG DESG DIPG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.29: Modifiability interaction plots for class grime injection.

DISG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.10

−0.05

0.00

0.05

0.10

0.15

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.30: Modifiability interaction plots for DISG.

237

TEEG TIG

PEEG PIG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.3

−0.2

−0.1

0.0

0.1

−0.3

−0.2

−0.1

0.0

0.1

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.31: Modifiability interaction plots for modular grime injection.

PEAG TEAG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.50

−0.25

0.00

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.32: Modifiability interaction plots for PEAG and TEAG.

238

MTECG MTEUG MTIUG

MPECG MPEUG MPIUG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−0.3

−0.2

−0.1

0.0

0.1

0.2

−0.3

−0.2

−0.1

0.0

0.1

0.2

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.33: Modifiability interaction plots for modular organizational grime injection.

MPICG MTICG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.8

−0.6

−0.4

−0.2

0.0

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.34: Modifiability interaction plots for MTEUG.

239

PECG PICG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

0.0

0.1

0.2

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.35: Modifiability interaction plots for PECG and PICG.

PERG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

0.000

0.005

0.010

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.36: Modifiability interaction plots for PERG.

240

PIRG
A

da
pt

er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.6

−0.4

−0.2

0.0

Pattern Type

C
ha

ng
e

in
 M

od
ifi

ab
ili

ty

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.37: Modifiability interaction plots for PIRG.

Class Grime, Modular Grime, and Organizational Grime. Each grime category plot contains

a matrix of subplots (one per grime type in the category). The y-axis is the change in

Modifiability, the x-axis is the design pattern type, and the points plotted are the values for

each injection severity. We will begin with the plots for Class Grime.

We begin with the interaction plots for Class Grime as depicted in Figures 10.29 and

10.30. This figure shows us that not all pattern types afflicted with class grime have an

impact on Modifiability. However, it does suggest that for several levels of injection severity,

Decorator, Prototype, and Visitor afflicted with Class Grime will have a positive change in

Modifiability. Additionally, there is evidence, as depicted in Figure 10.30, that for DISG

subtype with Injection Severity level 1 that Factory Method instances negatively impact the

Change in Modifiability. Finally, there appears to be no direct relationship between the

severity and the change in Modifiability.

Next, we look in detail at the interactions associated with Modular Grime types as

241

depicted in Figures 10.31 and 10.32. Figure 10.32 shows some interesting interactions. We

begin by considering the two afferent grime subtypes PEAG and TEAG. In these two cases,

injection severity levels of at least four across all pattern types (excluding Prototype) presents

significant negative changes in Modifiability. This relationship is in stark contrast to the

other four subtypes, depicted in 10.31, which appear to be more similar to the class grime

interactions. Again, for these four subtypes (PEEG, TEEG, PIG, and TIG), they have a

mostly positive effect on Modifiability and are focus on only a few pattern types, namely

Decorator, Prototype, and Visitor. Additionally, there appears to be no direct relationship

between injection severity and the change in Modifiability.

Next, we look at Modular Organizational Grime type interactions as depicted in Figures

10.33 and 10.34. Notably, across all subtypes of grime depicted, the patterns Decorator,

Prototype, and visitor seem to be the key pattern types. We also note that internal cyclic

forms of Modular Organizational Grime (namely MPICG and MTICG) appear to have a

negative effect, whereas the other subtypes have a predominately positive effect. However,

there appears to be no relationship between injection severity and the effect on the Change

in Modifiability for these same subtypes. Additionally, we note that other pattern types

appear to be prominent for the internal cyclic forms, particularly Observer, Singleton, and

Adapter.

Finally, we look at Package Organizational Grime type interactions as depicted in Figure

10.35. This figure shows that for PECG, PERG, and PICG subtypes, Decorator, Prototype,

and Visitor again provide positive effects. Additionally, for the cyclic subtypes (PECG

and PICG) Factory Method shows some involvement. The remaining subtype, PIRG, shows

significant effects on Modifiability across all pattern types with predominantly adverse effects.

The only exceptions to this are the positive effect found for Prototype and Visitor. Thus,

again, there appears to be no relationship between injection severity and the change in

Modifiability.

242

Table 10.6: Summary of Modularity data.

Characteristic Min Median Mean Max SD

∆Modularity -2.64236 0.0 -0.6583 1.23418 0.5395721

Histogram for Change in Modularity

Change in Modularity

F
re

qu
en

cy

−2 −1 0 1

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 10.38: Histogram of the change in Modifiability.

10.4.5 Modularity

This subsection describes the results of the Modularity analysis. We subdivided the

analysis into a subsection describing the data and descriptive statistics, and a subsection

describing hypothesis testing.

10.4.5.1 Descriptive Statistics This section presents the results of the Modularity

experiment using descriptive statistics and plots. First, we show the summary of the Change

in Modularity (the dependent variable) in Table 10.6. The table shows the basic statistics

243

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins: 100

objects:
9,984
 100 (per bin)

sigModularity

−2 −1 0 1

PTFactor

Adapter
...
CoR
...
Prototype
...
Template M.

missing

ITFactor

DEPG
...
MPECG
...
PEAG
...
TEEG

missing

ISFactor

0
1
2
3
4
5

missing

Figure 10.39: Table plot of Modularity data.

across the 9,984 observations. This table suggests that across all observations, the change

in Modularity ranges between -2.64236 and 1.23418, and the mean change in Modularity is

-0.06583. However, given the distribution of the values being skewed to the right as depicted

by the histogram in Figure 10.38, the median value of 0.0 provides a better measure of the

centrality of the data. Combining all of this with the standard deviation of 0.5395721, we

know the following about this data: i) the majority of the observations showed no change

to Modularity; ii) of those observations that showed any change in Modularity, it can be

either negative or positive and that the magnitude is greater in the negative direction; and

iii) there were some observations which show significant changes in Modularity both in the

positive and negative directions. To better understand how this data is distributed, in the

context of the independent variables, we constructed two plots: the first is a table plot (see

Figure 10.39), and the second is a scatterplot (see Figure 10.40).

244

Adapter

Bridge

Command

Composite

CoR

Decorator

Factory M.

Flyweight

Observer

Prototype

Proxy

Singleton

State

Strategy

Template M.

Visitor

−2 −1 0 1
Change in Modularity (rating)

P
at

te
rn

 T
yp

e

Injection Type

DEPG

DESG

DIPG

DISG

IEPG

IESG

IIPG

IISG

MPECG

MPEUG

MPICG

MPIUG

MTECG

MTEUG

MTICG

MTIUG

PEAG

PECG

PEEG

PERG

PICG

PIG

PIRG

TEAG

TEEG

TIG

Scatterplot of Change in Modularity by Pattern Type

Figure 10.40: Scatterplot of the Change in Modifiability and Pattern Type.

Figure 10.39 depicts a table plot of the dependent and each of the independent variables.

Each column of this plot represents a single variable, while each plot row represents a

sample of the data. The first column presents a histogram of the Change in Modularity

(sigModularity) separated into 100 bins each containing 100 observations. The remaining

columns show the values of Pattern Type (PTFactor), Injection Type (ITFactor), and

Injection Severity (ISFactor) for the 100 values for each row of the Change in Modularity.

This data view allows us to see the distribution of the data and any interesting patterns that

may exist across the columns.

In this plot, we initially see that approximately 20% of the change in Modularity is

positive, 22% is negative, and the remaining is zero. Between the 0% and approximately

20% marks the change in Modularity is positive and appears to related to only a subset of

the injection types. Of these changes there are two groups of injection types that affect the

245

changes separated by apparent difference in the magnitude of the change. However, these

changes do not appear to be related to any of the other independent variables. Additionally,

the last approximately 22% of the data indicates a negative change in Modularity and appears

to be related to a different subset of Injection Types, and again there two groups apparently

different in the magnitude of the changes affected. Again, there does not appear to be any

relation to either the Pattern Type or the Injection Severity. The remaining 58% of the data

has a value of zero. This data is the only data where the Injection Severity level of 0 occurs.

Furthermore, it appears that a change of zero cuts across all other Injection Severity levels,

all Pattern Types, and all Injection Types as well.

Figure 10.40 shows the scatterplot of the Change in Modularity by Pattern Type, with

each point colored according to the Injection Type. This plot shows several key things. First,

negative changes occur across all Pattern Types and all Injection Types. However, we can see

that the largest magnitude of change is the injection of primarily Modular Organizational

Grime (ranging from just below zero to just above -2.5). Additionally, smaller negative

changes can be seen and appear to be due to the injection of Modular Grime (ranging from

approximately -0.25 to -0.5). Furthermore, there appears to be significant positive changes

due to Modular Grime and Package Organizational Grime ranging from just above 0.0 to

1.0.

10.4.5.2 Hypothesis Testing Initially, we begin the analysis by determining if using the

parametric ANOVA approach is appropriate by validating its fundamental assumptions. As

noted above in Section 10.2.4, the two fundamental assumptions we are concerned with are

the normality and homogeneity of variances assumptions.

Normality Assumption To evaluate this assumption, we plotted the ANOVA model, as

depicted in Figure 10.18. The pertinent plot here is the “Normal Q-Q” Plot in the upper

right quadrant. Here we see deviations from Normal in the tails of the data, which is a strong

246

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

9712 9629

5261

−4 −2 0 2 4

−
5

0
5

10

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

97129629

5261

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

3.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location

9712 96295261

−
10

0
5

10

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Adapter CoR Flyweight Proxy Strategy
PTFactor :

Constant Leverage:
 Residuals vs Factor Levels

97129629

5261

Figure 10.41: Modularity diagnostic plots.

indicator of a violation of the normality assumption. This evidence is further confirmed using

the Anderson-Darling normality test. The results of this test (A = 1122.3, p < 2.2e−16)

provides strong evidence to reject the null hypothesis and further confirming the violation

of the normality assumption.

Homogeneity of Variances Assumption This assumption is evaluated using a similar

process as the Normality assumption. We again look to Figure 10.18, focusing on the

“Residual vs. Fitted” plot in the upper-left quadrant. This plot indicates that there is

a violation of the assumption. To analytically confirm this, we executed Levene’s Test for

Homogeneity of Variance. The results (F (2495, 7488) = 3.1551, p < 2.2e−16) of this test

provides strong evidence to reject the null hypothesis that the variances are the same. These

results further confirming this assumption has been violated.

247

IIPG IISG

DISG IEPG IESG

DEPG DESG DIPG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

Pattern Type

C
ha

ng
e

in
 M

od
ul

ar
ity

Injection
Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.42: Modularity interaction plots for class grime injection.

Permutation F-Test Analysis The assumption validation steps indicate that we must

either transform the data or use a permutation F-test approach. After several attempts to

adjust for the violations, we moved forward with the permutation F-test approach. The

overall results of this test (F (2495, 7488) = 57.63, p < 2.2e−16) indicates strong evidence to

reject the null hypothesis that there is no difference in the mean change in Modularity.

With the knowledge that a difference in the mean change in Modularity exists between

two or more treatment combinations, we continue by considering any significant interactions.

In this case, there is strong evidence (p < 2.2e−16) to reject H2,0 that there is no difference in

the mean change in Modularity for each level of the three-way interaction effect. With this in

mind, we will consider a graphical analysis of these interactions. To plot these interactions,

we subdivided them into grime categories: Class Grime, Modular Grime, and Organizational

Grime. Each grime category plot contains a matrix of subplots (one per grime type in the

category). In these plots, the y-axis is the change in Modularity, the x-axis is the design

248

TEEG TIG

PEEG PIG
A

da
pt

er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

0.000

0.025

0.050

0.075

0.100

0.000

0.025

0.050

0.075

0.100

Pattern Type

C
ha

ng
e

in
 M

od
ul

ar
ity

Injection
Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.43: Modularity interaction plots for modular grime injection.

PEAG TEAG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Pattern Type

C
ha

ng
e

in
 M

od
ul

ar
ity

Injection
Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.44: Modularity interaction plots for PEAG and TEAG.

249

MTECG MTICG MTIUG

MPECG MPICG MPIUG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

−2.0

−1.5

−1.0

−0.5

0.0

0.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Pattern Type

C
ha

ng
e

in
 M

od
ul

ar
ity

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.45: Modularity interaction plots for modular organizational grime injection.

MPEUG MTEUG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

0.0

0.3

0.6

0.9

Pattern Type

C
ha

ng
e

in
 M

od
ul

ar
ity

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.46: Modularity interaction plots for MTEUG.

250

PICG PIRG

PECG PERG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pattern Type

C
ha

ng
e

in
 M

od
ul

ar
ity

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.47: Modularity interaction plots for package organizational grime injection.

pattern type, and the points plotted are the values for each injection severity. We will begin

with the plots for Class Grime.

We begin with the interaction plots for Class Grime as depicted in Figure 10.42. This

figure shows us that not all pattern types afflicted with class grime have an impact on

Modifiability. However, it does suggest that for several levels of injection severity, Decorator,

Prototype, and Visitor afflicted with Class Grime will have a positive change in Modularity.

Interestingly, there appears to be no direct relationship between the severity and the change

in Modularity.

Next, we look in detail at the interactions associated with Modular Grime types

as depicted in Figures 10.43 and 10.44. Here there are some interesting interactions.

Specifically, we consider the two afferent grime subtypes PEAG and TEAG. In these two

cases, when injection severity is at least four across all pattern types (excluding Prototype),

there are significant negative changes in Modularity. This finding is in stark contrast to

251

the other four subtypes, which appear to be more similar to the class grime interactions.

Again, these four subtypes (PEEG, TEEG, PIG, and TIG) have a mostly positive effect

on Modularity and focus on only a few pattern types, namely Decorator, Prototype, and

Visitor. Additionally, there appears to be no direct relationship between injection severity

and the change in Modularity.

Next, we look at Modular Organizational Grime type interactions as depicted in Figures

10.45 and 10.46. Again, we note that only a few key patterns appear to affect a change in

Modularity when afflicted with these subtypes of grime. Notably, across all subtypes of

grime depicted, the patterns Decorator, Prototype, and visitor seem to be the key pattern

types. We also note that internal cyclic forms of Modular Organizational Grime (namely

MPICG and MTICG) appear to have a negative effect, whereas the other subtypes have

a predominately positive effect. Additionally, we note that other pattern types appear to

be prominent for the internal cyclic forms, particularly Observer, Singleton, and Adapter.

Additionally, looking at Figure 10.46 we can see that it appears that there is minimal

variability across Pattern Types and Injection Severity levels concerning the Change in

Modularity. Rather it appears that for all levels, MTEUG affects nearly 1-star positive

change in Modularity.

Finally, we look at Package Organizational Grime type interactions as depicted in Figure

10.47. This figure shows that for PECG, PERG, and PICG subtypes, Decorator, Prototype,

and Visitor again provide positive effects. Additionally, for the cyclic subtypes (PECG

and PICG) Factory Method shows some involvement. The remaining subtype, PIRG, shows

significant effects on Modularity across all pattern types with predominantly negative effects.

The only exceptions to this are the positive effect found for Prototype and Visitor. Again,

there appears to be no relationship between injection severity and the change in Modularity.

252

Table 10.7: Summary of Reusability data.

Characteristic Min Median Mean Max SD

∆Reusability 0.0 0.0 0.0 0.0 0.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins: 100

objects:
2,496

 25 (per bin)

sigReusability

0

PTFactor

Adapter
...
CoR
...
Prototype
...
Template M.

missing

ITFactor

DEPG
...
MPECG
...
PEAG
...
TEEG

missing

ISFactor

0
1
2
3
4
5

missing

Figure 10.48: Table plot of Reusability data.

10.4.6 Reusability

This subsection describes the results of the Reusability analysis. We subdivided the

analysis into a subsection describing the data and descriptive statistics, and a subsection

concerns hypothesis testing.

10.4.6.1 Descriptive Statistics This section presents the results of the Reusability

experiment using descriptive statistics and plots. First, we show the summary of the Change

in Reusability (the dependent variable) in Table 10.7. The table shows the basic statistics

253

Adapter

Bridge

Command

Composite

CoR

Decorator

Factory M.

Flyweight

Observer

Prototype

Proxy

Singleton

State

Strategy

Template M.

Visitor

−0.050 −0.025 0.000 0.025 0.050
Change in Reusability (rating)

P
at

te
rn

 T
yp

e

Injection Type

DEPG

DESG

DIPG

DISG

IEPG

IESG

IIPG

IISG

MPECG

MPEUG

MPICG

MPIUG

MTECG

MTEUG

MTICG

MTIUG

PEAG

PECG

PEEG

PERG

PICG

PIG

PIRG

TEAG

TEEG

TIG

Scatterplot of Change in Reusability by Pattern Type

Figure 10.49: Scatterplot of the Change in Reusability and Pattern Type.

across the 2,496 observations. This table suggests that across all observations, the change

in Reusability was 0. This observation is further confirmed in both a table plot (see Figure

10.48), and a scatterplot (see Figure 10.49).

Figure 10.48 depicts a table plot of the dependent and each of the independent variables.

Each column of this plot represents a single variable, while each plot row represents a

sample of the data. The first column presents a histogram of the Change in Reusability

(sigReusability) separated into 100 bins each containing 25 observations. The remaining

columns show the values of Pattern Type (PTFactor), Injection Type (ITFactor), and

Injection Severity (ISFactor) for the 25 values for each row of the Change in Reusability.

This data view allows us to see the distribution of the data and any interesting patterns

that may exist across the columns. In this plot, we initially see that approximately all of the

change in Reusability is zero. This is further confirmed in Figure 10.49. This figure shows

254

that across all pattern types and all injection types the change in reusability is zero.

10.4.6.2 Hypothesis Testing Initially, we begin the analysis by determining if using

the parametric ANOVA approach is appropriate. We determined this by validating the

fundamental assumptions of ANOVA. As noted above, the two fundamental assumptions we

are concerned with are normality and homogeneity of variances assumptions.

Normality Assumption Due to the nature of the data, all values for the change in

Reusability being zero, we were unable to evaluate this assumption.

Homogeneity of Variances Assumption Due to the nature of the data, all values for

the change in Reusability being zero, we were unable to evaluate this assumption.

Permutation F-Test The nature of the data collected suggests no measurable effect on

Reusability when any form of structural grime is injected. To evaluate this, we conducted a

permutation F-test with the null hypothesis that there is no difference in the mean change

in Reusability due to any combination of pattern type, injection type, and injection severity.

Unfortunately, the data did permit the evaluation of this.

10.4.7 Technical Debt Principal

This subsection describes the results of the Technical Debt Principal analysis. We

subdivided the analysis into a subsection describing the data and descriptive statistics, and

a subsection describing hypothesis testing.

10.4.7.1 Descriptive Statistics This section presents the results of the Technical Debt

Principal experiment using descriptive statistics and plots. First, we show the summary of

the Change in Technical Debt Principal (the dependent variable) in Table 10.8. The table

shows the basic statistics across the 4,992 observations. This table suggests that across all

255

Table 10.8: Summary of TD Principal data.

Characteristic Min Median Mean Max SD

∆TD Principal -0.9351 0.1002 0.3206 12.7850 0.6634359

Histogram for Change in TD Principal

Change in TD Principal

F
re

qu
en

cy

0 2 4 6 8 10 12

0
50

0
10

00
15

00
20

00
25

00
30

00

Figure 10.50: Histogram of the change in TD Principal.

observations, the change in Technical Debt Principal ranges between -0.9351 and 12.7850

man-months, and the mean change in Technical Debt Principal is 0.3206 man-months.

However, given the distribution of the values being heavily skewed to the left as depicted

by the histogram in Figure 10.50, the median value of 0.1002 man-months provides a better

measure of the centrality of the data. Combining all of this with the standard deviation of

0.6634359, we know the following about this data: i) the majority of the observations showed

a change to Technical Debt Principal; ii) of those observations that showed any change in

Technical Debt Principal, it can be either negative or positive and that the magnitude is

256

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins: 100

objects:
4,992

 50 (per bin)

TD.Principal

0 2 4 6

PTFactor

Adapter
...
CoR
...
Prototype
...
Template M.

missing

ITFactor

DEPG
...
MPECG
...
PEAG
...
TEEG

missing

ISFactor

0
1
2
3
4
5

missing

Figure 10.51: Table plot of TD Principal data.

greater in the positive direction; and iii) there were some observations which show significant

changes in Technical Debt Principal both in the positive and negative directions. To better

understand how this data is distributed, in the context of the independent variables, we

constructed two plots: the first is a table plot (see Figure 10.51), and the second is a

scatterplot (see Figure 10.52).

Figure 10.51 depicts a table plot of the dependent and each of the independent variables.

Each column of this plot represents a single variable, while each plot row represents a sample

of the data. The first column presents a histogram of the Change in Technical Debt Principal

(TD.Principal) separated into 100 bins each containing 50 observations. The remaining

columns show the values of Pattern Type (PTFactor), Injection Type (ITFactor), and

Injection Severity (ISFactor) for the 50 values for each row of the Change in Technical Debt

Principal. This data view allows us to see the distribution of the data and any interesting

257

Adapter

Bridge

Command

Composite

CoR

Decorator

Factory M.

Flyweight

Observer

Prototype

Proxy

Singleton

State

Strategy

Template M.

Visitor

0 5 10
Change in TD Principal (man−months)

P
at

te
rn

 T
yp

e

Injection Type

DEPG

DESG

DIPG

DISG

IEPG

IESG

IIPG

IISG

MPECG

MPEUG

MPICG

MPIUG

MTECG

MTEUG

MTICG

MTIUG

PEAG

PECG

PEEG

PERG

PICG

PIG

PIRG

TEAG

TEEG

TIG

Scatterplot of Change in TD Principal by Pattern Type

Figure 10.52: Scatterplot matrix of the Change in TD Principal and Pattern Type.

patterns that may exist across the columns.

In this plot, we initially see that approximately 70% of the change in Technical Debt

Principal is positive, 10% is negative, and the remaining is zero. Between the 0% and

approximately 70% marks the change in Technical Debt Principal is positive and the largest

magnitude changes appear to be related to only a subset of the injection types. Additionally,

the smallest magnitude positive changes appear to be due in large part to Injection Severity

level 1 injections. Beyond these apparent relationships, there does not appear to be any other

patterns related to the positive changes in Technical Debt Principle. The last approximately

10% of the data indicates a negative change in Technical Debt Principal and appears to

be related to a different subset of Injection Types, and again there two groups apparently

different in the magnitude of the changes affected. Again, there does not appear to be any

relation to either the Pattern Type or the Injection Severity. The remaining approximately

258

20% of the data has a value of zero. This data is the only data where the Injection Severity

level of 0 occurs. Furthermore, it appears that a change of zero cuts across all other Injection

Severity levels, all Pattern Types, and all Injection Types as well.

Figure 10.52 shows the scatterplot of the Change in TD Principal by Pattern Type,

with each point colored according to the Injection Type. This plot shows several key

things. First, both large positive and small negative changes occur across all Pattern Types

and all Injection Types. Additionally, we can see that the largest magnitude of change is

the injection of primarily Modular Organizational Grime, with the largest changes due to

MTICG. Additionally, the largest spikes in TD Principal occur for the Visitor, Singleton,

Observer, and Decorator patterns.

10.4.7.2 Hypothesis Testing Initially, we begin the analysis by determining if using

the parametric ANOVA approach is appropriate. We determined this by validating the

fundamental assumptions of ANOVA. As noted above, the two fundamental assumptions we

are concerned with are the normality and homogeneity of variances assumptions.

Normality Assumption To evaluate this assumption, we plotted the ANOVA model, as

depicted in Figure 10.18. The pertinent plot here is the “Normal Q-Q” Plot in the upper

right quadrant. Here we see deviations from Normal in the tails of the data, which is a strong

indicator of a violation of the normality assumption. This evidence is further confirmed using

the Anderson-Darling normality test. The results of this test (A = 534.18, p < 2.2e−16)

provides strong evidence to reject the null hypothesis and further confirming the violation

of the normality assumption.

Homogeneity of Variances Assumption This assumption is evaluated using a similar

process as the Normality assumption. We again look to Figure 10.18, focusing on the

“Residual vs. Fitted” plot in the upper-left quadrant. This plot indicates that there is

259

−2 0 2 4 6

−
4

0
2

4

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
893

3389
1830

−4 −2 0 2 4

−
10

0
10

20

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
893

3389
1830

−2 0 2 4 6

0
1

2
3

4

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location

8933389

1830

−
20

0
10

20

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Adapter CoR Flyweight Proxy Strategy
PTFactor :

Constant Leverage:
 Residuals vs Factor Levels

893

3389
1830

Figure 10.53: TD Principal diagnostic plots.

a violation of the assumption. To analytically confirm this, we executed Levene’s Test for

Homogeneity of Variance. The results (F (2495, 2496) = 4.254e+26, p < 2.2e−16) of this

test provide strong evidence to reject the null hypothesis that the variances are the same.

These results further confirming this assumption has been violated.

Permutation F-Test Analysis The assumption validation steps result in the conclusion

that either we transform the data or use a permutation F-test approach. After several

attempts to transform the data, we opted to move forward with the permutation F-test

approach. The overall results (F (2495, 2496) = 6.226, p < 2.2e−16) of this test indicate

strong evidence to reject the null hypothesis that there is no difference in the mean change

in TD Principal.

260

IIPG IISG

DISG IEPG IESG

DEPG DESG DIPG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

Pattern Type

C
ha

ng
e

in
 T

D
 P

rin
ci

pa
l Injection

Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.54: TD Principal interaction plots for class grime injection.

TEAG TEEG TIG

PEAG PEEG PIG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Pattern Type

C
ha

ng
e

in
 T

D
 P

rin
ci

pa
l Injection

Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.55: TD Principal interaction plots for modular grime injection.

261

MTECG MTICG MTIUG

MPECG MPICG MPIUG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0

2

4

6

8

0

2

4

6

8

Pattern Type

C
ha

ng
e

in
 T

D
 P

rin
ci

pa
l Injection

Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.56: TD Principal interaction plots for modular organizational grime injection.

MPEUG MTEUG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.4

0.0

0.4

Pattern Type

C
ha

ng
e

in
 T

D
 P

rin
ci

pa
l Injection

Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.57: TD Principal interaction plots for MTEUG.

262

PECG PICG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

0.0

0.5

1.0

1.5

2.0

Pattern Type

C
ha

ng
e

in
 T

D
 P

rin
ci

pa
l Injection

Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.58: TD Principal interaction plots for PECG and PICG.

PERG PIRG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.3

0.0

0.3

0.6

Pattern Type

C
ha

ng
e

in
 T

D
 P

rin
ci

pa
l Injection

Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.59: TD Principal interaction plots for PERG and PIRG.

263

Interaction Effects With the knowledge that a difference in the mean change in TD

Principal exists between two or more treatment combinations, we continue by determining

if significant interactions must be considered. In this case, there is strong evidence (p <

2.2e−16) to reject H2,0 that there is no difference in the mean change in TD Principal for

each level of the three-way interaction effect. With this in mind, we consider a graphical

analysis of these interactions. We subdivided by grime class: Class Grime, Modular Grime,

and Organizational Grime to plot these interactions. Each grime category plot contains a

matrix of subplots (one per grime type in the category). For each plot, the y-axis is the

change in TD Principal, the x-axis is the design pattern type, and the points plotted are the

values for each injection severity. We will begin with the plots for Class Grime.

We begin with the interaction plots for Class Grime as depicted in Figure 10.54. This

figure shows that although for each subtype of Class Grime, all pattern types affect a positive

change in TD Principal as the Injection Severity increases, it appears that some pattern types

have a greater impact than others. The specific patterns which seem to have spikes in the

Change in TD Principal across all grime types appear to be Bridge, Decorator, Observer,

Singleton, and Visitor. A final note for Class Grime is that the level of change in TD

Principal is minimal, ranging from 0.0 to approximately 0.0155 man-months. We next look

at the interactions associated with Modular Grime subtypes.

Modular Grime subtype interactions are depicted in Figure 10.55. This figure shows

similar information as was seen in the Class Grime interactions. Again we note that for

each grime type, across each pattern type, the are apparent positive effects on the change in

TD Principal for Injection Severity levels 1 - 5. We also note that there are similar spikes

for each type of grime for the Bridge, Decorator, Observer, Singleton, and Visitor patterns.

Additionally, the values of the level of Change in TD Principal associated with Modular

Grime types tend to be very small and ranges from 0.0 to approximately 0.01 man-months.

We next discuss the interactions associated with Modular Organizational Grime subtypes.

264

Figures 10.56 and 10.57 depict Modular Organizational Grime subtype interactions.

Figure 10.56 can be further decomposed into three groups. The first group shows the largest

effects on TD Principal from the MPICG, MPIUG, and MTICG types. The first group

ranges from 0.0 to approximately 0.07 man-months. The second group, MPECG, MTECG,

and MTIUG, show moderate changes in TD Principal. The range of the change in TD

Principal for this group is between 0.0 and approximately 0.02 man-months. The third

group composed of only MTEUG is the most interesting in that it shows slight negative

changes in TD Principal. Again, the key spikes for each type of grime occur mainly in

the Decorator, Observer, Singleton, and Visitor. The range for this group is quite small and

cannot necessarily be identified from Figure 10.56. Instead, we have plotted just the MTEUG

interactions as shown in Figure 10.57. In this figure, the negative spikes become visible with

Command, Decorator, Observer, Singleton, and Visitor showing the most distinct spikes,

including a positive spike for Visitor at Injection Severity level 4. We next discuss the

interactions associated with the Package Organizational Grime subtypes.

Finally, Package Organization Grime subtype interactions are depicted in Figures 10.58

and 10.59. Figure 10.58 shows similar positive effects on the Change in TD Principal for

PECG and PICG subtypes. It is also noteworthy that for an Injection Severity level 1,

several Pattern Types indicate a negative effect on TD Principal for both PECG and PICG.

On the other hand, Figure 10.59 shows that PERG and PIRG effects grow from negative

to positive as Injection Severity increases across pattern types. The most interesting set

of interactions is those of the PIRG subtype, which indicates that lower values (1 - 3) of

Injection Severity have a negative impact on TD Principal. Change in TD Principle borders

near or above zero as the Injection Severity levels increase beyond 3 for each pattern type.

Additionally, we see similar spikes across each subtype depicted at the pattern types Bridge,

Decorator, Observer, Singleton, and Visitor.

265

Table 10.9: Summary of TD Interest data.

Characteristic Min Median Mean Max SD

∆TD Interest -0.0072254 0.0006794 0.0025232 0.0962732 0.005841174

Histogram for Change in TD Interest

Change in TD Interest

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08 0.10

0
10

00
20

00
30

00
40

00
50

00

Figure 10.60: Histogram of the change in TD Interest.

10.4.8 Technical Debt Interest

This subsection describes the results of the Technical Debt Interest analysis. We

subdivided the analysis into a subsection describing the data and descriptive statistics, and

a subsection describing hypothesis testing.

10.4.8.1 Descriptive Statistics This section presents the results of the Technical Debt

Interest experiment using descriptive statistics and plots. First, we show the summary of

the Change in Technical Debt Interest (the dependent variable) in Table 10.9. The table

266

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins: 100

objects:
7,488

 75 (per bin)

TD.Interest

0.00 0.02 0.04 0.06

PTFactor

Adapter
...
CoR
...
Prototype
...
Template M.

missing

ITFactor

DEPG
...
MPECG
...
PEAG
...
TEEG

missing

ISFactor

0
1
2
3
4
5

missing

Figure 10.61: Table plot of TD Interest data.

shows the basic statistics across the 7,488 observations. This table suggests that across all

observations, the change in Technical Debt Interest ranges between -0.0072254 and 0.0962732

man-months, and the mean change in Technical Debt Interest is 0.0025232 man-months.

However, given the distribution of the values being heavily skewed to the left as depicted by

the histogram in Figure 10.60, the median value of 0.0006794 man-months provides a better

measure of the centrality of the data. Combining all of this with the standard deviation

of 0.005841174, we know the following about this data: i) the majority of the observations

showed a change to Technical Debt Interest; ii) of those observations that showed any change

in Technical Debt Interest, it can be either negative or positive and that the magnitude is

greater in the positive direction; and iii) there were some observations which show significant

changes in Technical Debt Interest both in the positive and negative directions. To better

understand how this data is distributed, in the context of the independent variables, we

267

Adapter

Bridge

Command

Composite

CoR

Decorator

Factory M.

Flyweight

Observer

Prototype

Proxy

Singleton

State

Strategy

Template M.

Visitor

0.000 0.025 0.050 0.075 0.100
Change in TD Interest (man−months)

P
at

te
rn

 T
yp

e

Injection Type

DEPG

DESG

DIPG

DISG

IEPG

IESG

IIPG

IISG

MPECG

MPEUG

MPICG

MPIUG

MTECG

MTEUG

MTICG

MTIUG

PEAG

PECG

PEEG

PERG

PICG

PIG

PIRG

TEAG

TEEG

TIG

Scatterplot of Change in TD Interest by Pattern Type

Figure 10.62: Scatterplot of the Change in TD Interest and Pattern Type.

constructed two plots: the first is a table plot (see Figure 10.61), and the second is a

scatterplot (see Figure 10.62).

Figure 10.61 depicts a table plot of the dependent and each of the independent variables.

Each column of this plot represents a single variable, while each plot row represents a

sample of the data. The first column presents a histogram of the Change in Technical

Debt Interest (TD.Interest) separated into 100 bins each containing 75 observations. The

remaining columns show the values of Pattern Type (PTFactor), Injection Type (ITFactor),

and Injection Severity (ISFactor) for the 75 values for each row of the Change in Technical

Debt Interest. This data view allows us to see the distribution of the data and any interesting

patterns that may exist across the columns.

In this plot, we initially see that approximately 70% of the change in Technical Debt

Interest is positive, 10% is negative, and the remaining is zero. Between the 0% and

268

approximately 70% marks the change in Technical Debt Interest is positive and the largest

magnitude changes appear to be related to only a subset of the injection types. Additionally,

the smallest magnitude positive changes appear to be due in large part to Injection Severity

level 1 injections. Beyond these apparent relationships, there does not appear to be any other

patterns related to the positive changes in Technical Debt Principle. The last approximately

10% of the data indicates a negative change in Technical Debt Interest and appears to

be related to a different subset of Injection Types, and again there two groups apparently

different in the magnitude of the changes affected. Again, there does not appear to be any

relation to either the Pattern Type or the Injection Severity. The remaining approximately

20% of the data has a value of zero. This data is the only data where the Injection Severity

level of 0 occurs. Furthermore, it appears that a change of zero cuts across all other Injection

Severity levels, all Pattern Types, and all Injection Types as well.

Figure 10.62 shows the scatterplot of the Change in TD Interest by Pattern Type, with

each point colored according to the Injection Type. This plot shows several key things.

First, both large positive and small negative changes occur across all Pattern Types and all

Injection Types. Additionally, we can see that the largest magnitude of change is due to

the injection of primarily Modular Organizational Grime, with the largest changes due to

MTICG and MPICG. Additionally, the largest spikes in TD Interest occur for the Visitor,

Singleton, Observer, and Decorator patterns.

10.4.8.2 Hypothesis Testing Initially, we begin the analysis by determining if using the

parametric ANOVA approach is appropriate by validating its fundamental assumptions. As

noted above in Section 10.2.4, the two fundamental assumptions we are concerned with are

the normality and homogeneity of variances assumptions.

Normality Assumption To evaluate this assumption, we plotted the ANOVA model, as

depicted in Figure 10.18. The pertinent plot here is the “Normal Q-Q” Plot in the upper

269

−0.02 −0.01 0.00 0.01 0.02 0.03 0.04 0.05

−
0.

02
0.

02

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
53412532 4008

−4 −2 0 2 4

−
10

0
5

15

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
534125324008

−0.02 −0.01 0.00 0.01 0.02 0.03 0.04 0.05

0
1

2
3

4

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location

53412532 4008

−
15

−
5

5
15

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Adapter CoR Flyweight Proxy Strategy
PTFactor :

Constant Leverage:
 Residuals vs Factor Levels

53412532 4008

Figure 10.63: TD Interest diagnostic plots.

right quadrant. Here we see deviations from Normal in the tails of the data, which is a strong

indicator of a violation of the normality assumption. This evidence is further confirmed using

the Anderson-Darling normality test. The results of this test (A = 964.57, p < 2.2e−16)

provides strong evidence to reject the null hypothesis and further confirming the violation

of the normality assumption.

Homogeneity of Variances Assumption This assumption is evaluated using a similar

process as the Normality assumption. We again look to Figure 10.18, focusing on the

“Residual vs. Fitted” plot in the upper-left quadrant. This plot indicates that there is

a violation of the assumption. To analytically confirm this, we executed Levene’s Test for

Homogeneity of Variance. The results (F (2495, 4992) = 1.369, p < 2.2e−16) of this test

provides strong evidence to reject the null hypothesis that the variances are the same. These

results further confirming this assumption has been violated.

270

IIPG IISG

DISG IEPG IESG

DEPG DESG DIPG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0.000

0.005

0.010

0.015

0.000

0.005

0.010

0.015

0.000

0.005

0.010

0.015

Pattern Type

C
ha

ng
e

in
 T

D
 In

te
re

st

Injection
Severity

0

1

2

3

4

5

Class Grime Interactions

Figure 10.64: TD Interest interaction plots for class grime injection.

Permutation F-Test Analysis The assumption validation steps result in the conclusion

that either we need to transform the data or use a permutation F-test approach. After

several attempts to adjust for the violations, we opted to conduct a permutation F-test. The

overall results of this test (F (2495, 4992) = 11.01, p < 2.2e−16) indicates strong evidence to

reject the null hypothesis that there is no difference in the mean change in TD Interest.

Interaction Effects Knowing that a difference in the mean change in TD Interest exists

between two or more treatment combinations, we continue considering any significant

interactions. In this case, there is strong evidence (p < 2.2e−16) to reject H2,0 that there is

no difference in the mean change in TD Interest for each level of the three-way interaction

effect. With this in mind, we will consider a graphical analysis of these interactions. To plot

these interactions, we subdivided them into grime categories: Class Grime, Modular Grime,

and Organizational Grime. Each grime category plot contains a matrix of subplots (one per

271

TEAG TEEG TIG

PEAG PEEG PIG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0.000

0.003

0.006

0.009

0.000

0.003

0.006

0.009

Pattern Type

C
ha

ng
e

in
 T

D
 In

te
re

st

Injection
Severity

0

1

2

3

4

5

Modular Grime Interactions

Figure 10.65: TD Interest interaction plots for modular grime injection.

MTECG MTICG MTIUG

MPECG MPICG MPIUG

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

A
da

pt
er

B
rid

ge
C

om
m

an
d

C
om

po
si

te
C

oR
D

ec
or

at
or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r
P

ro
to

ty
pe

P
ro

xy
S

in
gl

et
on

S
ta

te
S

tr
at

eg
y

Te
m

pl
at

e
M

.
V

is
ito

r

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

Pattern Type

C
ha

ng
e

in
 T

D
 In

te
re

st

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.66: TD Interest interaction plots for modular organizational grime injection.

272

MPEUG MTEUG
A

da
pt

er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.0050

−0.0025

0.0000

0.0025

Pattern Type

C
ha

ng
e

in
 T

D
 In

te
re

st

Injection
Severity

0

1

2

3

4

5

Modular Organizational Grime Interactions

Figure 10.67: TD Interest interaction plot for MTEUG.

PECG PICG

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

0.000

0.005

0.010

0.015

0.020

Pattern Type

C
ha

ng
e

in
 T

D
 In

te
re

st

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.68: TD Interest interaction plots for PECG and PICG.

273

PERG PIRG
A

da
pt

er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

A
da

pt
er

B
rid

ge

C
om

m
an

d

C
om

po
si

te

C
oR

D
ec

or
at

or

Fa
ct

or
y

M
.

F
ly

w
ei

gh
t

O
bs

er
ve

r

P
ro

to
ty

pe

P
ro

xy

S
in

gl
et

on

S
ta

te

S
tr

at
eg

y

Te
m

pl
at

e
M

.

V
is

ito
r

−0.004

−0.002

0.000

0.002

0.004

0.006

Pattern Type

C
ha

ng
e

in
 T

D
 In

te
re

st

Injection
Severity

0

1

2

3

4

5

Package Organizational Grime Interactions

Figure 10.69: TD Interest interaction plots for PERG and PIRG.

grime type in the category). In each interaction plot, the y-axis is the change in TD Interest,

the x-axis is the design pattern type, and the points plotted are the values for each injection

severity. We will begin with the plots for Class Grime.

We begin with the interaction plots for Class Grime as depicted in Figure 10.64. This

figure shows that although for each subtype of Class Grime, all pattern types affect a positive

change in TD Interest as the Injection Severity increases, it appears that some pattern types

have a greater impact than others. The specific patterns which seem to have spikes in the

Change in TD Interest across all grime types appear to be Bridge, Decorator, Observer,

Singleton, and Visitor. A final note for Class Grime is that the level of change in TD

Interest is minimal, ranging from 0.0 to approximately 0.0155 man-months. We next look

at the interactions associated with Modular Grime subtypes.

Modular Grime subtype interactions are depicted in Figure 10.65. This figure shows

similar information as was seen in the Class Grime interactions. Again we note that for

274

each grime type, across each pattern type, the are apparent positive effects on the change

in TD Interest for Injection Severity levels 1 - 5. We also note that there are similar spikes

for each type of grime for the Bridge, Decorator, Observer, Singleton, and Visitor patterns.

Additionally, the values of the level of change in TD Interest associated with Modular Grime

types tend to be very small and ranges from 0.0 to approximately 0.01 man-months. We

next discuss the interactions associated with Modular Organizational Grime subtypes.

Figures 10.66 and 10.67 depict Modular Organizational Grime subtype interactions. As

shown, MPICG, MPIUG, and MTICG have the largest effects on TD Interest ranging from

0.0 to approximately 0.07 man-months. MPECG, MTECG, and MTIUG show a moderate

effect on the Change in TD Interest ranging between 0.0 and approximately 0.02 man-

months. We have plotted just the MTEUG interactions as shown in Figure 10.67. As

shown, MTEUG has a slightly negative effect on the Change in TD Interest. Again, the

key spikes/dips for each type of grime occur mainly in the Command, Decorator, Observer,

Singleton, and Visitor showing the most distinct spikes/dips, including a positive spike for

Visitor at Injection Severity level 4. We next discuss the interactions associated with the

Package Organizational Grime subtypes.

Finally, Package Organization Grime subtype interactions are depicted in Figures 10.68

and 10.69. Figure 10.68 shows similar positive effects on the Change in TD Interest for

PECG and PICG subtypes. It is also noteworthy that for an Injection Severity level 1,

several Pattern Types indicate a negative effect on TD Interest for both PECG and PICG.

On the other hand, Figure 10.69 shows that PERG and PIRG effects grow from negative

to positive as Injection Severity increases across pattern types. The most interesting set of

interactions is those of the PIRG subtype, which indicates that lower (values between 1 - 3)

levels of Injection Severity negatively impact the Change in TD Interest. However, as the

levels increase beyond 3 for each pattern type, the Change in TD Interest value is near zero.

Additionally, we see similar spikes across each subtype depicted at the pattern types Bridge,

275

Decorator, Observer, Singleton, and Visitor.

10.5 Interpretation

In this section we interpret the results identified in Section 10.4. This section is

further subdivided into three subsections. The first subsection (Section 10.5.1) evaluates

the results from Section 10.4 from the perspective of each of the research questions. The

second subsection (Section 10.5.2) describes the threats to validity for this study. Finally,

the third subsection (Section 10.5.3) will describes how these results generalize given in the

context of the findings and threats to validity.

10.5.1 Evaluation of Results and Implications

In this subsection we discuss the results as they pertain to the research questions

identified in Section 10.2.1. We begin with research questions RQ2.1 – RQ2.3 followed

by a summary of these results as they pertain to the more general question RQ2. Following

this, we analyze the results in the context of research questions RQ3.1 – RQ3.3 followed

by a summary of how these results pertain to the more general question RQ3.

10.5.1.1 RQ2.1 How does each type of Grime affect design pattern quality for each of

the selected Maintainability sub-characteristics? We found that across all grime types that

grime has a negative effect on Analyzability. Additionally, we found that the injection of

grime negatively impacts the Testability of pattern instances across all pattern types and

grime types. This provides further support for the implications to testability first identified

by Izurieta and Bieman [128, 133]. We note that with the exceptions of MPECG, MPICG,

MPIUG, MTECG, MTICG, MTIUG, and PERG types, the effect grime has on Testability is

dependent on Pattern Type. Furthermore, the Testability of instances of Bridge, Decorator,

Observer, Singleton, and Visitor pattern types appears affected by grime more than instances

276

of other pattern types.

Furthermore, grime affects Modifiability both negatively and positively but is dependent

on Pattern Type. Specifically, instances of the Decorator, Prototype, and Visitor patterns

will have their Modifiability positively impacted by all types of grime except PEAG, TEAG,

MPICG, MTICG, and PIRG. Of these, MPICG and MTICG will negatively impact these

same pattern types, but the PEAG, TEAG, and PIRG negatively impact the Modifiability

of all pattern types. Modifiability, in the SIG Model, is affected by three properties: Unit

Complexity, Duplication, and Module Coupling. Of these, only Module Coupling is affected

by the injection process. The injection process focuses on injecting structural components

rather than behavioral components, thus avoids creating excess complexity or duplication.

However, it does add in new couplings between classes, which can affect afferent coupling

which is the underlying metric used to measure Module Coupling. Furthermore, when Class

Grime is injected it increases the intra-class connections between fields and methods of

a class, without increasing the number of inter-class couplings. This then increases the

overall volume of the system. The rating value increases because the overall volume of the

system increases without increasing the module coupling, thus decreasing the risk. As for

the other forms of grime for which Modifiability increased, a similar reasoning may be given.

Specifically, for the forms of Organizational and Modular Grime (excluding those which

decreased), the injection process most likely added new classes and/or packages into the

system, increasing the volume at a rate greater than by which the Module Coupling value

was increased (if increased at all) when new afferent inter-class couplings were formed.

Additionally, we have found that Modularity is affected by all forms of grime. This

impact on Modularity may be positive or negative, depending on the type of grime, pattern

type, and injection severity.

277

10.5.1.2 RQ2.2 What level of injection severity affects a change in design pattern quality

for each of the Maintainability sub-characteristics? Across all grime types and pattern types,

we note that for all Injection Severity levels, wherein grime was injected, there was a negative

change in Analyzability. The only exception to this was for PECG and the Prototype Pattern

Type, for which an Injection Severity level of 1 resulted in a mean change in Analyzability

of 0. Similarly, across all grime types and pattern types, we note that there was a negative

change in Testability for all Injection Severity levels in which Grime was injected. On the

other hand, Modifiability is not affected for all patterns and types of grime at all levels of

Injection Severity. Rather, it may be positively or negatively affected for specific pattern

types (see RQ2.3 below) and when the Injection Severity level is 3 or more. The effects of

Grime on Modularity, in general, occur at all levels of injection severity. When considering

Class Grime, the positive effects often depend upon the level of injection severity. When

considering the adverse effects from grime on Modularity, these occur across all patterns

and, in general, all levels of injection severity.

10.5.1.3 RQ2.3 What is the difference between the effects of the grime types and their

subtypes on maintainability sub-characteristics? The effect of Grime on Analyzability differs

in magnitude depending on the grime category. The most significant impact on Analyzability

stems from the Organizational Grime category. In comparison, the effects of Class and

Modular Grime are quite small. However, when evaluating these forms of grime, it becomes

apparent that we must consider pattern type, as the Analyzability of Bridge, Decorator,

Observer, Singleton, and Visitor instances tends to be affected more than others.

The effect of Grime on Testability differs in magnitude depending on which type of

grime is injected. Of the three grime categories (Class, Modular, and Organizational),

the most significant impact on Testability stems from the Organizational Grime category.

In comparison, the effects of class and modular Grime are quite small. However, when

278

evaluating these forms of grime, it becomes apparent that Pattern Type must be considered

as the Testability of Bridge, Decorator, Observer, Singleton, and Visitor instances tends to

be affected more than others.

The critical differences between grime types and their subtypes when considering the

effect on Modifiability do not lie between the categories of grime but rather within. That said,

there is one stark difference between the negatively affecting grime Types PEAG, TEAG,

MPICG, and MTICG, and all others in that they have the most considerable magnitude of

change. Additionally, PEAG and TEAG affect all pattern types rather than a select few.

The remaining grime types are relatively indistinguishable in that they affect Modifiability

positively with nearly the same level of impact and for only a few pattern types noted above.

The key differences between how grime types and their subtypes affect Modularity are

sharply divided between Organizational Grime types and those found in Class and Modular

Grime (excluding PEAG and TEAG). Class and Modular Grime (excluding PEAG and

TEAG) affect Modularity in a small but positive way. On the other hand, the PEAG and

TEAG forms of Modular Grime, along with the Modular Organizational Grime subtypes,

have significant negative effects on Modularity. Of these, both MTICG and MPICG are the

most pronounced. Conversely, MTEUG and the Package Organizational Grime subtypes

have a significantly positive effect on Modularity.

10.5.1.4 RQ2 Summary In summary, design pattern grime can be a concern for the

overall Maintainability of a design pattern instance but may also be beneficial depending on

a developer’s/teams specific concerns. Except for Reusability, the level of concern developers

or teams should depend on the type of pattern affected, the type of grime it is afflicted with,

and the amount of grime present. We know that, in general, as severity increases, grime’s

effects (either positive or negative) will increase in magnitude.

However, we also note that neither Grime Type or Injection Severity had any discernible

279

effect on the Reusability of a pattern instance. Reusability, in the SIG Maintainability Model

is affected by Unit Size (as measured in SLOC) and Unit Interfacing (as measured by Number

of Parameters) properties. These properties, are not directly affected by the injection process.

The reason for this is that the injection process, as currently implemented, focuses on the

injection of structural aspects rather than on behavioral aspects. Thus, when methods (or

Units in the SIG terminology) are injected they tend to be mainly stub methods, and thus

provide no change to Unit Size (as they have no size). Unlike Unit Size, Unit Interfacing

could be affected by the Injection Process, if parameter injection is selected for the injection

of temporary couplings between classes. However, as noted injected methods tend to be

stubs and will follow the basic definition from a pattern specification. In this case, the

initial number of method parameters will be zero or very small, thus adding in an additional

parameter will not be enough to change the rating for Unit Interfacing. For these reasons,

Reusability does not appear to be affected by injected structural forms of grime.

10.5.1.5 RQ3.1 How does each type of grime affect design pattern technical debt

principal and interest? The impact of all grime categories on TD Principle and TD Interest

are very similar. All grime subtypes excluding MTEUG, PECG, and PICG appear to

affect a positive change in TD Principal across all pattern types, which increases as the

severity of injected grime increases. These results are in line with the work from Dale and

Izurieta [62] which showed similar results for Modular Grime. The remaining three subtypes

are much more interesting, specifically MTEUG. MTEUG negatively impacts TD Principal

and Interest, suggesting that MTEUG reduces technical debt across all pattern types and

for all injection severity levels. This finding will require further investigation.

10.5.1.6 RQ3.2 What level of grime severity affects a change in design pattern technical

debt principal and interest? As noted above in RQ3.1, all severity levels affect technical

debt, and except for the MTEUG subtype, they affect a positive change in TD Principal and

280

Interest. Additionally, similar to the results of Dale and Izurieta [62] for all grime subtypes,

as the injection severity increases, the change in TD Principal and Interest also increases in

magnitude (either positively or negatively).

10.5.1.7 RQ3.3 What is the difference between the effects of the grime types and their

subtypes on technical debt principal and interest? The key difference in the effects of Grime

on TD Principal and Interest between subtypes can be separated into two groups. The first

group contains the subtypes for Class and Modular Grime. There is relatively little difference

between the effects on either TD Principal or Interest across grime types in this group.

Instead, the primary difference is in the effects of pattern type and injection severity. The

key pattern types of concern are the Decorator, Observer, Singleton, and Visitor patterns.

The effect on TD Principal and Interest is markedly higher than for other patterns affected

by the same type of Grime. The second group is the Organizational Grime subtypes, in

which they follow a similar trend as that of the first group (except for MTEUG), but the

magnitude of the effects tends to be much higher. Lastly, MTEUG has minor effects on

TD Principal and Interest, but these effects are negative rather than positive. Additionally,

MTEUG also dips on Command rather than the Bridge pattern and the Template Method

pattern.

10.5.1.8 RQ3 Summary In summary, design pattern grime is something of serious

concern for technical debt management. Grime, in general, will increase a pattern instance’s

TD Principal and Interest. Developers should keep this in mind, especially when working

with pattern instances of type Bridge, Decorator, Observer, Singleton, or Visitor. One caveat

to this is that MTEUG does reduce both the TD Principal and Interest of a pattern instance

regardless of the pattern type. Thus, if this form of Grime manifests within a pattern instance

already afflicted by other forms of Grime, it may mask the real issues at hand. These issues

are of specific concern as it has been shown in prior work that Grime will continue to build

281

up unless remediated [77,133,234].

10.5.2 Limitations of the Study

This section describes the limitations and threats to the validity of this study.

Specifically, we focus on threats to the conclusion, internal, construct, content, and external

validity, per the frameworks proposed by Campbell and Cook [44], Campbell and Stanley [45],

and Wohlin et al. [276].

10.5.2.1 Conclusion Validity Conclusion validity is concerned with establishing statis-

tical significance between the independent and dependent variables. There is a threat to

conclusion validity stemming from the fact that we utilized a control level that always

resulted in zero, as expected, ensuring that we could not meet the Homogeneity of Variance

assumption for the ANOVA model. Additionally, using classification and regression tree

analyses can further help mitigate internal threats beyond a permutation F-test.

10.5.2.2 Internal Validity Internal validity is concerned with the relationship between

the treatments and the outcomes and whether this relationship is causal or due to other

factors. Although the experiments were fully controlled due to the number of replications

conducted to ensure that the power of the experiments was at the required level, we

simultaneously ensured that we would see some change. Additionally, when considering

the effects of the control level injecting many zeroes into the results, we can mitigate this

further by exploring other techniques.

10.5.2.3 Construct Validity Construct validity is concerned with the meaningfulness

of measurements and the quality choices made about independent and dependent variables

such that these variables are representative of the underlying theory. In this experiment,

we used a Java™ specific calibration of the ISO/IEC 25010 quality model maintainability

282

sub-characteristics via our implementation of the SIG Maintainability measurement method.

In order to measure the expected small changes in each maintainability subcharacteristic, we

modified the original SIG approach to use a ratio scale based on a linear projection during

the rating phase (c.f. 5.3.2.1). Although this approach does not assume an equal distance

between each rating interval, it does assume that the relationship is linear between ratings.

Thus, this creates difficulty in interpreting the values and meaning, which is a clear threat

to construct validity.

Additionally, there is a threat in using Nugroho’s approach for measuring TD Interest.

Specifically, the conversion of the value for the QualityLevel from an interval value to a

ratio value as QF through exponentiation violates measurement theory. Additionally, this

is affected by the same issue we noted with the linear projection for the SIG values. Finally,

we used the same approach for measuring QualityLevel, simply the Maintainability rating,

causing another violation of construct validity.

10.5.2.4 Content Validity Content validity is concerned with how well the selected

measures cover the content domain. In this experiment, we measure software maintainability

using an implementation of the SIG Maintainability Model. We calibrated this model

(c.f. 5.3.2.3) for the Java™ language using open source projects from the Qualitas Corpus

[255]. This model adequately covers the five maintainability sub-characteristics of concern.

Furthermore, the IT, IS, and PT metrics are well defined and cover the content domain

within the underlying tools’ limitations. However, the PT metric only covers 16 of the 23

GoF design patterns, as this is the limit of the Pattern4 design pattern detection tool, which

threatens content validity.

10.5.2.5 External Validity External validity is concerned with the ability to generalize

the results of a study. We conducted the experiment using generated instances of Java™

design pattern implementations. However, we did not generate the studied instances within

283

patterns extracted from existing software systems. Thus, we cannot directly generalize to

either open source or industry software, which threatens external validity. Additionally,

other forms of grime may not have been accounted for, including Behavioral Grime and other

unknown forms. Both issues are threats to the external validity of the study. Furthermore,

using only Java™ limits our ability to generalize to Java™ instances of design patterns, which

is another threat.

10.5.3 Inferences

In each, each experimental unit is a design pattern instance whose size selected template,

and internal components are subject to pseudo randomization within the specification of the

pattern to be implemented. Additionally, each injection uses pseudo randomization to select

elements into which grime is injected (constrained by the definition of the specific grime type).

This is akin to random sampling from a population. Thus, one may infer the difference in

the change in Analyzability, Testability, Modifiability, Modularity, TD Principal, and TD

Interest was caused by the difference in Injection Type, Injection Severity, and Pattern Type.

Because the subjects were generated randomly based on Java™ design pattern templates

designed to mimic the structure of design patterns found in real software, there is a theoretical

case that these results may extend to pattern instances found in professional-grade Java™

software. However, there is not a statistical case for such a generalization.

10.6 Conclusion and Future Work

In this study, we conducted seven experiments to understand the effects of the

relationship of design pattern grime on software maintainability and technical debt. Each

experiment was conducted as a full-factorial design using the software injection process to

inject each of the 26 design pattern grime types at 6 severity levels into 16 generated pattern

types. The results showed that indeed design pattern grime has significant effects on both

284

software maintainability sub-characteristics as well as technical debt interest and principal.

However, this effect is dependent upon the grime type, pattern type, and level of severity.

Our results have made significant strides towards addressing the problem identified

in Section 1.1.1. Furthermore, these results have confirmed prior works from Izurieta and

Bieman [128, 133] as well as Dale and Izurieta [62]. However, the underlying experimental

conditions leave us unable to know if these results apply within existing software systems.

Future work will consist of conducting case studies to further study Grime in existing

software systems and design pattern instances to explore these results further. Additionally,

we need to return to these experiments and focus on the interesting issues that we have

identified. Specifically, further explorations of the relationships between the MTIUG type

and TD Principal and Interest.

285

CHAPTER ELEVEN

VERIFICATION STUDY

I am pretty sure there is a difference between “this has not been proven” and

“this is false.”

–Ron Jeffries

11.1 Introduction

Prior studies involving design pattern grime injection including the study in Chapter 10

and those found in the literature [61,101] are limited to the simulation of grime accumulation.

Though such experiments are necessary to develop an understanding of the effects of grime,

these results do not speak to the effects of grime in actual software systems.

As described in Chapter 8, we have developed an approach to resolve this limitation

via, what we term, “Verification Studies.” In this chapter we detail a Verification Study that

serves two distinct functions. The first is to build upon the injection studies by validating

that the results found in the previous experiments hold within real software systems. This

verification is done by comparing the differences in our attributes of concern (maintainability

and technical debt subcharacteristics). We extract a pair of design pattern instances from a

single chain, wherein there is a difference in the grime accumulated from one version to the

next. We then evaluate the change in the attributes of concern between the extracted versions

of the pattern instance and compare this change to what is expected given the results for the

same pattern type, grime type(s), and grime severity (of the change in grime) for the pair

studied. The second function is to verify that the results of injected grime match the results

of actual instances of that grime. As in the first comparison, we extract sequential pattern

instances from a pattern chain where a difference in the accumulated grime is identified.

286

The earlier version becomes the base while the later version is noted as the normal path

of evolution. We then copy the base version, and use the difference in grime between the

extracted versions to guide injection of grime into the copy of the base version. We then

calculate the difference between the normal path of evolution and the base, and between the

injected evolution and the base. We then compare these values to determine how well the

effects of the injection process correspond to the effects of the real changes in development.

The goal of this study was stated in Chapter 1, and for the reader’s convenience we restate

it here:

RG4: Analyze design pattern instances for the purpose of comparing injected and

observed instances of grime with respect to their ISO/IEC 25010 Maintainability

subcharacteristics attributes and Technical Debt Principal and Interest from the

perspective of researchers in the context of open source Java™ software projects.

Following the GQM process this goal then leads to our main question of interest and its

corresponding rationale:

RQ4: Do observed and injected grime have a similar effect on the Maintainbility

subcharacteristics and Technical Debt Principal and Interest?

Rationale: Evaluate the assertion that the process of grime injection reflects the

same effect on Maintainability and Technical Debt Principal and Interest as the

natural process of grime accumulation.

With this question in mind, this chapter is organized as follows. Section 11.2 describes

the design of this study. Section 11.3 describes the selection criteria for each case selected

as a part of this study. Section 11.4, defines the data collection procedures for this study.

Section 11.5 defines the analysis procedures for this study. Section 11.6 describes the results

and their analysis for this study. Section 11.7 describes the threats to the validity and other

287

limitations of this study. Finally, Section 11.8 provides a summary and concluding remarks

for this study.

11.2 Design

In this study, we are interested in evaluating individual pattern chains meeting a defined

selection criteria. The context of each pattern chain are their containing systems. This links

directly to RG4 reiterated in section 11.1 and further connects to the main question as

we compare the effects of both injected and observed grime in each case. In the spirit of

the GQM, we have further refined the main question into a series of directly answerable

questions, their guiding rationale, and a set of metrics defined to facilitate answering these

questions. The questions and metrics are as follows:

RQ4.1: Does grime injection have a similar effect on Analyzability as the observed

effect of grime on Analyzability?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Analyzability as the natural process of grime accumulation.

RQ4.2: Does grime injection have a similar effect on Testability as the observed effect

of grime on Testability?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Testability as the natural process of grime accumulation.

RQ4.3: Does grime injection have a similar effect on Modifiability as the observed effect

of grime on Modifiability?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Modifiability as the natural process of grime accumulation.

288

RQ4.4: Does grime injection have a similar effect on Modularity as the observed effect

of grime on Modularity?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Modularity as the natural process of grime accumulation.

RQ4.5: Does grime injection have a similar effect on Reusability as the observed effect

of grime on Reusability?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Reusability as the natural process of grime accumulation.

RQ4.6: Does grime injection have a similar effect on Technical Debt Principal as the

observed effect of grime on Technical Debt Principal?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Technical Debt Principal as the natural process of grime

accumulation.

RQ4.7: Does grime injection have a similar effect on Technical Debt Interest as the

observed effect of grime on Technical Debt Interest?

Rationale: Evaluate the assertion that the process of grime injection reflects

the same effect on Technical Debt Interest as the natural process of grime

accumulation.

M4.1: Analyzability – as defined in Section 10.2.1.

M4.2: Testability – as defined in Section 10.2.1.

M4.3: Modifiability – as defined in Section 10.2.1.

M4.4: Modularity – as defined in Section 10.2.1.

M4.5: Reusability – as defined in Section 10.2.1.

289

M4.6: Technical Debt Principal – as defined in Section 10.2.1.

M4.7: Technical Debt Interest – as defined in Section 10.2.1.

11.3 Selection

We selected software systems from which to extract design patterns instances for

analysis from the Qualitas Corpus. The Qualitas Corpus was selected, as it contains well-

known Open Source Java™ systems, each of which has multiple versions. The selected

systems provide the context within which studied pattern chains exist. For this study we

have selected the systems from the Qualitas Corpus shown in Table 11.1.

Table 11.1: Software systems and their version ranges selected for evaluation from the
Qualitas Corpus.

Versions Versions

System Min Max Evaluated System Min Max Evaluated

jgrapht 0.4.0 0.8.3 3 trove 0.0.1 3.0.0 5

jmoney 0.2.0 0.4.4 3 jag 2.2.0 6.1.0 3

fitjava 1.0 1.1 3 quickserver 1.0 1.4.7 12

drawswf 1.0.1 1.1.1 3 sunflow 0.05.1 0.07.2 2

webmail 0.6.1 0.7.6 3 informa 0.2.0 0.7.0alpha1 6

nekohtml 0.9.5 1.9.18 4 marauroa 2.6.3 3.8.1 2

jsXe 0.1.1 0.4beta 11 sablecc 3.1 4 beta.4 2

The subjects of this study are not simply entire systems, nor are they only individual

design pattern instances, but rather pattern instance pairs from within the same pattern

chain. Thus, we require the ability to identify pattern chains for each system studied.

The range of each system’s versions is shown in Table 11.1 starting with the min version

number and ending with the max version number. Next, we extract adjacent pairs of pattern

290

instances from each chain to form study units via the data collection process. Within each

study unit, we call the earlier version of the pattern the “Base Version” and the latter

version the “Natural Evolution Version”. Pairs must only meet the requirement that there

is a difference in the accumulated grime between each instance. With this in mind, we next

describe the data collection process used in this study.

11.4 Data Collection

The following subsections describes the data collection process, how this data is to be

stored, and the data to be collected.

11.4.1 Data Collection Process

An overview of the data collection process is depicted in Figure 11.1. As shown, the

process is broken down into two phases. The first phase extracts pattern chains from separate

versions of selected projects. The second phase conducts the verification study.

Phase 1: Study Unit Extraction This process follows the path indicated by the

numbers encircled in green, as follows: 1.) Initially, we have selected several systems from the

Qualitas Corpus, as listed in Table 11.1. For each system version, we use the Arc framework

to 2.) extract Java artifact information, 3.) identify design patterns using the Pattern4 tool,

and 4.) collect design pattern grime data for each pattern instance found. 5.) Once each

system and its versions have been analyzed, we begin identifying all pattern chains. This

process uses the Pattern Chaining Algorithm (Algorithm 4.3), connecting pattern instances

across system versions. 6.) For each pattern chain in the system, a comparative grime

analysis is conducted. This analysis compares the grime detected in each pair of instances

in a chain to identify when detected grime changed between versions. Pairs for which such

changes are identified are marked for extraction as study units. 7.) These marked pairs

291

Figure 11.1: Data collection process.

are then extracted into study unit projects along with an injector control file. The lower

version number is extracted as the “Base Version,” and the higher version is extracted as the

“Natural Evolution Version”. The injector control file lists the grime introduced between

versions and the locations where the grime occurred. The extracted pattern instances are

provided with the standard gradle/maven project structure and a gradle build file. Once all

study units are extracted, the Verification Study phase may be commenced.

Phase 2: Verification Study This phase follows the path indicated by the numbers

encircled in green. The thick green arrows indicate a separation of phases, wherein the prior

steps must complete execution prior to traversing the green arrow. This process evaluates

292

Table 11.2: An example data table (note: this represents a complete table, that was separated
into two for space concerns, thus the Unit column is the same for both versions).

Natural Evolution Version . . .

Unit Analyz. Test. Modif. Modul. Resus. TD Prin. TD Int. . . .

0 0.01 0.2 0.2 0.0 0.25 1.0 0.03 . . .

...
...

...
...

...
...

...
... . . .

. . . Injected Evolution Version

Unit . . . Analyz. Test. Modif. Modul. Resus. TD Prin. TD Int.

0 . . . 0.01 0.2 0.2 0.0 0.25 1.0 0.03

... . . .
...

...
...

...
...

...
...

each study unit as follows: 1.) Projects are constructed for the study unit’s “Base Version”

and “Natural Evolution Version”. 2.) The “Natural Evolution Version” and “Base Version”

are analyzed using the Standard Java Tooling. 3.) The “Base Version” project is then copied

and an “Injected Evolution Version” project is created. 4.) The newly created “Injected

Evolution Version” is injected with the grime specified by the “Injector Control File”. The

injected project is then analyzed using the Standard Java Tooling. 5.) Each time a project

is analyzed using the Java Standard Tooling, the collected data is stored in the associated

ArcDb. 6.) Once the basic Java analysis is complete for all three projects of the study unit,

the Metrics, SIG Maintainability Model, and TD Analyses are conducted. 7.) The results of

these analyses are stored in the ArcDb. 8.) The process extracts these results and combines

them into a report, which 10.) is stored as the results CSV file (as described in the following

subsection). 11.) Finally, these results are analyzed according to the analysis procedures

defined in Section 11.5.

293

11.4.2 Data to be Collected

For each pattern chain under study, we extract the chain identifier, quality attribute

values, technical debt principal, and technical debt interest values from the PatternInstance

and Measures tables of the ArcDb. This data is then accumulated into a table, similar to

the example shown in Table 11.2, with the following specifications:

• Each row of the table represents a study unit analyzed.

• The first column of the table is the unique study unit identifier.

• The second through sixth columns of the table represent the maintainability subchar-

acteristic values measured for the “Normal Evolution Version” of the pattern chain.

• The seventh and eighth columns of the table represents the technical debt principal

and interest values, respectively, measured for the “Normal Evolution Version” of the

pattern chain.

• The ninth through thirteenth columns of the table represent the maintainability

subcharacteristic values measured for the “Injected Evolution Version” of the pattern

chain.

• The fourteenth and fifteenth columns of the table represents the technical debt principal

and interest values, respectively, measured for the “Injected Evolution Version” of the

pattern chain.

11.5 Analysis Procedure

We will use the following analysis procedures in answering the questions posed in Section

11.2. The collected data represents the differences between the “Normal Evolution Version”

and the “Base Version” and the “Injected Evolution Version” and the “Base Version” on

294

software quality attributes and technical debt principal and interest. To answer research

questions RQ4.1–RQ4.7 we need a method to compare each pair of results. We expect

that if the injected grime effects present an accurate representation of the behavior of grime,

then we should see similar changes in the measured qualities of the injected project as we

see in the natural evolution of the code. However, due to the nature of the injection process,

the magnitude of the changes will not necessarily be the same. Thus, we are looking for

agreement in the changes for both the natural grime and injected grime systems. In order

to evaluate the agreement, we will use Cohen’s κ measure of agreement [54].

Cohen’s κ has several assumptions. The first is that the data is nominal scale data.

The second is that the raters have been deliberately selected. In the case of this study, the

rater is the mapping process from raw attribute change data to the nominal scale. This

mapping converts each raw measure of change into one of three values: L if the difference

is less than zero, E if the difference is equal to zero, and G if the difference is greater than

0. The third assumption is that this is an inter-rater or intra-rater problem. An inter-rater

problem is one in which two raters (typically an individual) rate the same items. We wish

to determine the level of agreement between these two individuals within the context of the

rated items. The intra-rater problem focuses on a single rater rating two different items and

evaluating the degree of agreement between two evaluations by the same rater. In the case

of this study, we have a rater which is the quality and technical debt measurements system.

The ratings are then the mapping to L, E, or G classes. We should expect that the ratings

should be the same if the underlying injection system mimics the actual changes that occur

as grime evolves. Thus, this study meets all the assumptions for using Cohen’s κ.

The κ statistic is then calculated using the following formula:

κ =
pa − pe
1− pe

295

pa is the percent agreement between raters, and pe is the theoretical probability of chance

agreement. The values of pa and pe are found by constructing a confusion matrix for the

ratings. The columns of the matrix are the ratings of the first rater, and the rows represent

the ratings of the second rater. Each cell in the matrix contains a count of the number of

units rated with the intersecting ratings from each rater. Using this matrix, pa becomes the

sum of values along the diagonal divided by the sum of all the cells.

Additionally, pe is then the sum of the probability for each rating. For each rating, we

find the percentage for the column and the row of that rating. That is, we sum the column

values for the rating and divide by the total. We also sum the row values for the rating

and divide this value by the total. Next, we find the product of these values to find the

probability of the rating. We then sum all probabilities of the ratings together to find pe.

To make this more salient, we next present an example.

In order to make the calculation and assessment of Cohen’s κ clear, let us consider

an example. Using the data from Table 11.7, below, we can derive the confusion matrix

shown in Table 11.3. In this table, each cell represents the count of pairs with the assigned

ratings. So, for example, 3 study units were assigned an L for the Natural Evolution and an

L for the Inject Evolution. The cells along the right margin represent row totals (or Natural

Evolution totals), and the cells along the bottom margin represent the column totals (or

Injected Evolution totals). The lower right cell represents the total number of values (in this

case, 8). Next we can calculate pa as the sum of the diagonal divided by the total number

of values, or pa = 4
8

= 0.5. Next, we calculate, pe which is the sum of the probabilities for

each rating. In this case, pe = pL + pE + pG. These values are calculated as follows:

296

Table 11.3: Example confusion matrix with margin values for use in calculating Cohen’s
Kappa for Analyzability.

Injected Evolution

Ratings L E G Nat Total

Natural

Evolution

L 3 0 1 4

E 0 1 1 2

G 2 0 0 2

Inj Total 5 1 2 8

pL =
ΣLNat

Total
∗ ΣLInj

Total

=
4

8
∗ 5

8

= 0.5 ∗ 0.625

= 0.3125

pE =
ΣENat

Total
∗ ΣEInj

Total

=
2

8
∗ 1

8

= 0.25 ∗ 0.125

= 0.03125

pG =
ΣGNat

Total
∗ ΣGInj

Total

=
2

8
∗ 2

8

= 0.25 ∗ 0.25

= 0.0625

297

Thus, pe = 0.3125 + 0.03125 + 0.0625 = 0.40625 which tells us that the theoretical level of

chance agreement is 40.625%. Using this value and pa from above, we can calculate κ as

follows:

κ =
pa − pe
1− pe

=
0.5− 0.40625

1− 0.40625

=
0.09375

0.59375

= 0.157894737

This reaches the same approximate value for κ produced by R and found in Table 11.8.

The level of agreement can then be interpreted using the mappings in Table 11.4, as

set forth by Landis and Koch [158]. In the case of perfect agreement, κ would be 1, while in

the case of no agreement (or no better than chance agreement), κ would be equal to 0. We

note that κ may be less than zero, which indicates that the level of agreement was less than

the level of the agreement due to chance.

11.6 Results and Discussion

11.6.1 Study Unit Extraction

As the first part of this study, we executed the pattern chain detection and study unit

extraction process. The results of this process are shown in Table 11.5 and are summarized

as follows. This process led to the evaluation of a total of 62 software project versions. From

these versions, we extracted a total of 230 pattern chains comprised of 705 design pattern

instances. However, upon analyses of the chains and contained instances, we could only

identify eight instance pairs between which a change in the grime occurred.

298

Table 11.4: Cohen’s κ agreement level mappings.

κ Agreement Level

<0 Less than chance agreement

0 Chance agreement

0.01 – 0.20 Slight

0.21 – 0.40 Fair

0.41 – 0.60 Moderate

0.61 – 0.80 Substantial

0.81 – 1.0 Perfect

These identified instance pairs came from only three projects: fitjava, drawswf, and

quickserver, as shown in Table 11.5. We extracted each pair, forming study units for the

verification study phase. The details of each extracted study unit are shown in Table 11.6.

In this table, we note the unit number, the system, the base (lower) version number, the

natural evolution (upper) version number, the pattern type, and the grime type (and the

number of instances to be injected in parentheses, if other than one) to be injected. The

types of grime injected are based on the change in grime between versions. Interestingly,

only Package and Class Grime types appear to change within the evaluated pattern chains.

11.6.2 Verification Study

The resulting data collected during the verification study phase is shown in Table 11.7.

In this table, each pair of rows corresponds to a single unit of study and is identified by

the row pair number under the Unit column (please note that the pattern type associated

with each study unit is written below the unit number in italics). The top row of each pair

corresponds to the Natural (Nat) evolution of the pattern, while the bottom row corresponds

to the Injected (Inj) evolution of the pattern instance. The remaining columns correspond

299

Table 11.5: Selected projects and the number of versions, patterns identified, pattern chains
identified, and the number of study units identified in each project.

Project Versions Evaluated Instances Chains Units

jgrapht 3 27 9 0

jmoney 3 6 2 0

fitjava 3 12 4 5

drawswf 3 6 2 1

webmail 3 84 28 0

nekohtml 4 12 3 0

jsXe 11 66 6 0

trove 5 140 28 0

jag 3 24 8 0

quickserver 12 24 2 2

sunflow 2 118 59 0

informa 6 42 7 0

marauroa 2 106 53 0

sablecc 2 38 19 0

Total 62 705 230 8

to each of the quality/technical debt attributes of concern. The columns are in the following

order: Analyzability (Ana.), Testability (Test.), Modularity (Modul.), Modifiability (Modif.),

Reusability (Reus.), Technical Debt Principal (TD P.), and Technical Debt Interest (TD I.).

The values in each table cell are then the ratings derived from the raw data collected during

the study. The ratings in each cell are based on the mapping described in Section 11.5.

Additionally, we identify matched ratings for each attribute within a study unit by bold

type.

300

Table 11.6: Study units extracted.

Version
Unit ID System

Lower Upper
Pattern Type ∆ Grime

1 quickserver 1.0 1.1 State PECG

2 quickserver 1.0 1.1 State MPEUG, PICG

3 fitjava 1.0 1.0RC1 Singleton
PECG (2), MPECG,

MTECG

4 fitjava 1.0RC1 1.1 Adapter PECG

5 fitjava 1.0 1.0RC1 Template M.
MPECG (3),

MTECG (3), PECG

6 fitjava 1.0RC1 1.1 Template M. PECG

7 drawswf 1.1.0 1.1.1 State PIRG

8 fitjava 1.0RC1 1.1 Singleton IEPG (7), PECG

Table 11.7 also serves to compare the effects observed for both the natural and injected

evolution versions against the results from the experiments in Chapter 10. Those cells

marked with light blue have a result that appears to correspond with the results of the

experiments. This comparison considers the pattern type and grime type for the unit of

study in question. Additionally, the entire column for Reusability is marked in gray, as there

are no corresponding results from the experiments. This marking provides the following key

findings:

• The percentage of the natural pattern evolution instances demonstrate a similar effect

as seen in the simulation experiments. This percentage allows us to evaluate how closely

the experimental results from Chapter 10 represent the effects of grime on pattern

instances in actual software. The results show that only 41.07% of the instances reflect

301

Table 11.7: Verification study results.

Unit Ana. Test. Modul. Modif. Reus. TD P. TD I.

1 Nat E E E E E E E

State Inj G L G E G G G

2 Nat L L L E G G G

State Inj L L L E G G G

3 Nat G L E E G G G

Singleton Inj L L L E L L L

4 Nat E E E E E E E

Adapter Inj E L L G L L L

5 Nat L G G G G G G

Template M. Inj G L L G L L L

6 Nat L G L G G G G

Template M. Inj L L L G L L L

7 Nat L G L E L G G

State Inj L L L E L L L

8 Nat G G E G L G G

Singleton Inj L L L G L L L

the experimental results.

• The percentage of injected pattern evolution instances that reflect the experimental

results in actual pattern instances. This percentage evaluate how well the injection

approach works within actual pattern instances. The data shows that only 52.083% of

the instances reflect the experimental results.

Next, these results are analyzed using Cohen’s Kappa on each pair of each unit for each

302

Table 11.8: Analysis results

Attribute κ Agreement Level

Analyzability 0.16 Slight

Testability 0.0 None

Modularity 0.048 Slight

Modifiability 0.75 Substantial

Reusability 0.091 Slight

TD Principal -0.077 None

TD Interest -0.077 None

attribute of concern to measure the agreement between pairs. Table 11.8 presents the results

of this analysis. As one would expect from looking at Table 11.7, there is little agreement

to be found, with two notable exceptions. The first is the substantial agreement across all

units for Modifiability (κ = 0.75). The second, as shown in Table 11.7, is that for Unit 2

there is 100% agreement across all attributes of concern. Furthermore, each unit analyzed

has at least one attribute (and several with two or more) with matching ratings.

11.6.3 Discussion

With these results in hand, we now look to address the research questions described in

Section 11.1. These results suggest slight agreement between injected and natural evolution

for Analyzability, Modularity, and Reusability. However, the number of natural evolution

instances corresponding to the experimental results for these attributes is relatively low

(excluding Reusability for which there is no data). Thus, there is a lack of evidence to

confirm questions RQ 4.1, 4.3, and 4.5. Similarly, Testability, TD Principal, and TD Interest

show no agreement and a lack of correspondence to the experimental data for the natural

evolution instances. Thus, we have little evidence to confirm RQ 4.2, 4.6, and 4.7. However,

303

there does appear to be strong evidence for RQ 4.3. Both the level of agreement between

the natural and injected evolution instances match, and there is a significant correspondence

between the natural evolution instances and the experimental data.

One possible issue that may have led to the disconnect between the Normal Evolution

and Injected Evolution results and between the Normal Evolution and Experimental results

is as follows. There is an implicit assumption that the change in grime when there are

multiple types is additive. The comparison to experimental results relied upon an informal

comparison of the amount of grime injected, pattern type of the instance, and grime type

adding the expected changes to determine if it would net increase, decrease, or effectively

zero for comparison to what was observed. However, if the assumption that grime effects are

additive is false, these results are invalid. This particular assumption applies to those study

units that include multiple types of grime (units 2, 3, 5, and 8). Future studies, will need to

be address this issue to improve the validity and reliability of the results.

These results overall indicate that the approach is not without merit. However, they

strongly indicate that further research is necessary. Specifically, these results suggest that

the results of the experiments do not hold outside of those experiments (i.e., within existing

software systems). The final takeaway from this is that several additional iterations will be

needed to refine and improve the injection process to represent real-world phenomena.

11.7 Threats to Validity

This section describes the limitations and threats to the validity of this study.

Specifically, we focus on threats to conclusion validity, internal validity, construct validity,

content validity, external validity, and reliability in accordance with the frameworks proposed

by Campbell and Cook [44], Campbell and Stanley [45], and Wohlin et al. [276] for

experimentation and the insights of Yin [285] and Runeson et al. [230] concerning case

studies.

304

Internal Validity

This validity check is concerned with the ability to show a causal relationship between

outcomes and treatments. The prior studies showed the causal relationship between grime

and quality and technical debt, via the injection process. In this study we validated this

relationship with evidence that the nature of the injection process matches that of observed

occurrences of grime in open source systems. Thus, there are no threats to internal validity.

Construct Validity

This validity check is concerned with using correct operational measures for the concepts

studied. We utilized detection techniques based directly on the definitions of each form of

grime presented in Chapter 9 and by Schanz and Izurieta [234]. Furthermore, operationalized

measures for the main quality characteristics from the ISO/IEC 25010 specification as

operationalized by our implementation of the SIG Maintainability Model. As noted in

Section 10.5.2, there are threats to construct validity due to our implementation of the

SIG Maintainability Model and due to our use of Nugroho et al.’s approach to measuring

TD Interest. An additional threat to construct validity is the assumption that the change

in grime between the Base Version and the Normal Evolution Version is accumulation. This

assumption poses a severe challenge to the validity of the results.

Content Validity

Content validity is concerned with how well the selected measures cover the content

domain. The selected measures are based on the ISO/IEC 25010 definitions for the

subcharacteristics of maintainability and based on current knowledge concerning technical

debt including both measures of principal and interest. Thus, there are no threats to content

validity.

305

External Validity

This validity check is concerned with the ability to generalize the results of a study.

This study was conducted across multiple software systems and included multiple types of

design patterns. Unfortunately, as the study considered only open-source software systems

implemented in Java™, we cannot extend our results beyond open-source Java software

systems, which pose a threat to the external validity of this study. Additionally, the small

sample size, the lack of grime type coverage, and the lack of pattern type coverage threaten

external validity and the generalizability of the results.

Reliability

Reliability is concerned with the dependence between specific researchers and the data

and analysis. In this study we utilized the Arc Framework to gather quantitative data in

an automated fashion. Thus, the data collected is not reliant on any researcher nor are the

values collected left to interpretation. Furthermore the analysis conducted utilized scripts

written for the R statistical processing software. The version of R used and the scripts used

will be made available to all researchers. Although, each of these mitigate any potential

threats to reliability, one threat remains due to the manual detection of design pattern

grime during the first phase of the data collection process.

11.8 Conclusion

In this Chapter, we have conducted an example of a Verification Experiment from

Phase 3 of the process described in Chapter 8. This study was the continuation of the

experiments completed in Chapter 10. This study compared the effects of grime from a

pattern instance’s natural evolution to that of an injected evolution on the Analyzability,

Testability, Modifiability, Modularity, Reusability, TD Principal, and TD Interest. We found

that with the current implementation of the Software Injection approach (see Chapter 6),

306

there is an apparent disconnect between the effects induced by injection and the effects

observed in existing software systems. We note that one primary exception to this was

substantial agreement (as measured by Cohen’s κ) for Modifiability. Thus, while the injection

approach does require refinement, this speaks to the need for the process defined in Chapter

8.

This process, by its very nature, is inherently iterative. Therefore, we should expect to

use the results of the verification study to improve the experimental process until we reach

the point of achieving substantial or near-perfect agreement for all attributes of concern. In

addition, we should use this process to ensure that the injected instances are representative

of actual phenomena. In short, for our future work, we will need to return to the software

injector, making refinements until the verification study reaches its goals. We are also

interested in collecting additional study units such that we capture each pattern type, each

grime type, and multiple combinations of grime as well. Once the injection process is refined,

we can then turn our attention to Phases 4 and 5 of the process. In these phases, we will

consider evaluating other properties of the design pattern grime within the context of multiple

and longitudinal case studies.

307

CHAPTER TWELVE

CONCLUSIONS AND FUTURE WORK

Optimism is an occupational hazard of programming: feedback is the treatment.

–Kent Beck

We have detailed the underlying methods to study and extend our knowledge of design

pattern disharmonies known as design pattern grime. To facilitate this, we developed a

general software artifact disharmony and issue research process. Following this process we

have extended the theoretical design pattern grime taxonomy to include extensions for both

class and organization grime and operationalized a software framework we call Arc. From

this taxonomy and an initial study involving design pattern grime [101], we further developed

the underlying goals and questions used to guide the remainder of this research.

Initial studies also helped inform the tooling which was later refined into the Arc

Framework. This framework forms the backbone for collecting the data from each of the

experiments and case studies conducted by following our research process. As a part of

this framework, and using the concepts from the taxonomy, we developed tools to integrate

data from several sources including: existing issue detection tools such as SpotBugs and

PMD, Pattern4 pattern detection tool, software metrics, quality and technical debt analysis,

and design pattern grime detection. We conducted several experiments and a verification

study using generated design patterns and those collected from open source software systems

written in the Java™programming language.

The remainder of this chapter is organized as follows: Section 12.1 synthesizes our

results and their relationship to existing work concerning design pattern grime. Section

12.2 describes the impact of the results and methods developed herein to researchers and

practitioners and summarizes the limitations of the results of the experiments and verification

308

study. Finally, Section 12.3 describes the immediate future work and extensions we are

proposing for this research.

12.1 Relationship to Existing Evidence

We developed an overarching process that allows for both experimentation and case

study research. With the goals to provide a consistent platform that allows for predictable

replication and to form a single approach with the capability of leading to a deeper

understanding than either approach may provide separately. We realized this process into

a concrete framework which we call the Arc Framework. Within the Arc Framework,

we have implemented several quality models and metrics, including an implementation

of Quamoco (based on our prior work [129]), QMOOD (based on our prior work [103]),

and the SIG Maintainability Model. Additionally, we have implemented two methods of

measuring Technical Debt. The first is an implementation of the CAST method for measuring

Technical Debt Principal (based on our prior work [103]), and the second is the first known

implementation of Nugroho’s approach for measuring both Technical Debt Principal and

Interest. Finally, underlying these quality and technical debt models are the metrics (based

on our prior work [104, 105]) measure the quality of the analyzed system. Thus, the Arc

Framework provides the underlying platform for the execution of the studies found within

this dissertation.

The studies found herein focused on the phenomena known as Design Pattern Grime.

The first phase of the process developed/refined the taxonomies of Class, Modular, and

Organizational Grime as first described by Izurieta [132]. We further refined Class Grime

based on a taxonomy from our earlier work [101]. Next, we refined the taxonomy for Modular

Grime based on the work of Schanz and Izurieta [234]. Finally, we developed the initial

taxonomy of Organizational Grime [134]. Additionally, we defined each type of grime within

a unified logical framework. Next, using the Arc Framework, we developed an approach to

309

simulate the effects of grime on software design patterns, which we call Software Injection.

This approach was based on prior work of Griffith and Izurieta [101], and Dale and Izurieta

[62] but with the new capability of directly injecting into source code as opposed to data

structures in memory or within object bytecode. We use this approach to study grime

in-vitro.

Using this capability and the addition of the Arc Framework’s ability to integrate several

collected data from existing tools, we conducted seven experiments evaluating generated

design pattern instances injected with design pattern grime. These experiments constituted

Phase 2 of the general process. Furthermore, the results of these experiments showed similar

results concerning the effects of modular Grime on Technical Debt Principal as that of Dale

and Izurieta [62]. As the severity of grime increases, there is a corresponding increase in

Technical Debt Principal. Additionally, the experimental results appear to provide further

support for the implications to testability first identified by Izurieta and Bieman [128,133].

Finally, we executed a verification study using the Arc Framework to identify design

pattern instances across software versions (forming design pattern chains) found in real

systems. These studies utilized automated design pattern grime detection to identify when

grime changed between versions of a pattern. The ability to automate grime detection was

based on the work of Marinescu [179] and our prior work [104, 105]. The implementation

of automated detection for grime constitutes a significant capability that has hindered prior

research. We then evaluated identified instances to further explore how well the experimental

results match the results from existing software systems and if the software injection system

requires fine-tuning by comparing the results of the natural evolution of a pattern instance

to those of an injected instance.

310

12.2 Impact and Limitations

As noted in the prior section, we have developed an approach to studying software

phenomena and their properties. Using the approach, we developed a concrete framework,

that allows for consistency of experimentation, to serve as the platform to conduct such

studies. Using this framework, we conducted both a series of simulation experiments and

a verification study to understand Design Pattern Grime. The experimental results showed

that design pattern grime can significantly affect both software Maintainability and Technical

Debt. These effects depend on the grime severity level, the grime type, and the design pattern

type. The results of the verification study suggest that the current software injection system

requires some fine-tuning and calibration to align it completely with what occurs in existing

software systems.

These results have the following implications on both engineers working in industry

and on other researchers. For researchers, we have developed a promising approach

that can be applied to various software phenomena across many domains within software

engineering. Examples can include security vulnerabilities, architectural issues, and build

automation issues. This process also fills a gap by providing a means by which empirical

researchers in these areas may bridge the divide between experimentation and case study

research. For practitioners in particular, as part of this research, we have developed an

open implementation of the SIG Maintainability Model and the tools to calibrate it, which

with some work can be transferred to industry to provide both empirically driven quality

and technical analysis of software systems. Additionally, there may be implications for the

evolution of design patterns grime, which requires further study.

311

Figure 12.1: Dimensions of future work.

12.3 Future Work

In the future, we plan to extend this work along four dimensions, as depicted in Figure

12.1. The first is in the domain of Software Quality Analytics. Though we have developed

312

implementations of the Quamoco, QMOOD, and SIG Maintainability quality measurement

frameworks, as described in Chapter 5 several extensions are needed to facilitate continued

research. First, Quamoco provides a quality modeling meta-model. Using this meta-model,

we intend to capture our other implementations as instances of the meta-model while also

capturing other more recent quality measurement approaches such as QATCH [242], its fork

PIQUE 1, among others. Next, although the Quamoco framework is language agnostic,

its underlying models are not. Thus we intend to extend the capabilities by developing

community vetted models for languages beyond Java™. Next, we intend to improve the

capabilities of Quamoco through research into multi-level calibration techniques. Finally,

we intend to resolve our current limitations in technical debt measurement by developing

implementations of current and proposed techniques.

The second dimension is that of design pattern analysis. Currently, we are utilizing

the SSA method implemented in the tool Pattern4 for design pattern detection. Our goal

is to re-implement this technique using our underlying Arc Data Model, without relying

on language-specific techniques, to provide a language-agnostic approach to design pattern

detection. We also intend to extend our data cleansing techniques to incorporate validation

of patterns using specifications provided in RBML and Elemental Design Patterns [245]. The

goal of this is to improve the detection results and extend the number of design patterns

capable of being detected.

The third dimension is that of Design Disharmonies. Here we are concerned with

the analysis of grime and further exploring Design Pattern Rot and the relations between

these and other well-known disharmonies (i.e. code smells, antipatterns, and modularity

violations). This research has the goal of improving detection, knowledge, and prediction of

their effects on quality.

The final dimension focuses on technical debt analysis. We intend to incorporate design

1https://github.com/msusel-pique/msusel-pique

https://github.com/msusel-pique/msusel-pique

313

pattern grime and rot into improved models of technical debt. The goal is to develop

practitioner-level models which aid in the remediation of technical debt across languages but

which also provide similar measures of Technical Debt Principal and Interest that models

such as Nugroho et al.’s approach [203] provide.

314

REFERENCES CITED

315

[1] OMG Unified Modeling Language™ (OMG UML), Infrastructure, Object Management Group, 2011.

[2] Object Constraint Language, Object Management Group, 2014.

[3] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui, Automatic package coupling and cycle minimization,
2009 16th working conference on reverse engineering, 2009Oct, pp. 103–112.

[4] Md Abdullah Al Mamun, Christian Berger, and Jorgen Hansson, Explicating, understanding, and
managing technical debt from self-driving miniature car projects, 2014 sixth international workshop on
managing technical debt, 2014, pp. 11–18.

[5] Ethem Alpaydin, Introduction to machine learning, 2nd ed, Adaptive computation and machine
learning, MIT Press, Cambridge, Mass, 2010.

[6] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Rodrigo O. Sṕınola, Forrest Shull,
and Carolyn Seaman, Identification and management of technical debt: A systematic mapping study,
Information and Software Technology 70 (February 2016), 100–121 (en).

[7] Nicolli S.R. Alves, Leilane F. Ribeiro, Vivyane Caires, Thiago S. Mendes, and Rodrigo O. Sṕınola,
Towards an ontology of terms on technical debt, 2014 sixth international workshop on managing
technical debt, 2014, pp. 1–7.

[8] Theodoros Amanatidis, Nikolaos Mittas, Athanasia Moschou, Alexander Chatzigeorgiou, Apostolos
Ampatzoglou, and Lefteris Angelis, Evaluating the agreement among technical debt measurement
tools: building an empirical benchmark of technical debt liabilities, Empirical Software Engineering
25 (September 2020), no. 5, 4161–4204 (en).

[9] Apostolos Ampatzoglou, Olia Michou, and Ioannis Stamelos, Building and mining a repository of
design pattern instances: Practical and research benefits, Entertainment Computing 4 (April 2013),
no. 2, 131–142 (en).

[10] Areti Ampatzoglou, Apostolos Ampatzoglou, Paris Avgeriou, and Alexander Chatzigeorgiou, Estab-
lishing a framework for managing interest in technical debt.

[11] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Paris Avgeriou, Pekka
Abrahamsson, Antonio Martini, Uwe Zdun, and Kari Systa, The Perception of Technical Debt in
the Embedded Systems Domain: An Industrial Case Study, 2016 IEEE 8th International Workshop on
Managing Technical Debt (MTD), October 2016, pp. 9–16.

[12] Areti Ampatzoglou, Alexandros Michailidis, Christos Sarikyriakidis, Apostolos Ampatzoglou, Alexan-
der Chatzigeorgiou, and Paris Avgeriou, A framework for managing interest in technical debt: an
industrial validation, Proceedings of the 2018 International Conference on Technical Debt, May 2018,
pp. 115–124 (en).

[13] Areti Ampatzoglou, Nikolaos Mittas, Angeliki-Agathi Tsintzira, Apostolos Ampatzoglou, Elvira-Maria
Arvanitou, Alexander Chatzigeorgiou, Paris Avgeriou, and Lefteris Angelis, Exploring the Relation
between Technical Debt Principal and Interest: An Empirical Approach, Information and Software
Technology 128 (December 2020), 106391 (en).

[14] T. W. Anderson and D. A. Darling, A Test of Goodness of Fit, Journal of the American Statistical
Association 49 (December 1954), no. 268, 765.

[15] G. Antoniol, R. Fiutem, and L. Cristoforetti, Design pattern recovery in object-oriented software,
Proceedings. 6th international workshop on program comprehension. iwpc’98 (cat. no.98tb100242),
1998, pp. 153–160.

[16] Francesca Arcelli Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessandro Marino, Comparing and
experimenting machine learning techniques for code smell detection, Empirical Software Engineering
(June 2015) (en).

316

[17] Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Stamatia Bibi, Alexander Chatzigeorgiou, and
Ioannis Stamelos, Monitoring Technical Debt in an Industrial Setting, Proceedings of the Evaluation
and Assessment on Software Engineering, April 2019, pp. 123–132 (en).

[18] A. Asencio, S. Cardman, D. Harris, and E. Laderman, Relating expectations to automatically recovered
design patterns, Ninth working conference on reverse engineering, 2002. proceedings., 2002, pp. 87–96.

[19] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and Massimiliano Di Penta,
An empirical study on the evolution of design patterns, Proceedings of the the 6th joint meeting of
the european software engineering conference and the acm sigsoft symposium on the foundations of
software engineering, 2007, pp. 385–394.

[20] Paris Avgeriou, Apostolos Ampatzoglou, Areti Ampatzoglou, and Alexander Chatzigeorgiou, Estab-
lishing a Framework for Managing Interest in Technical Debt:, Proceedings of the Fifth International
Symposium on Business Modeling and Software Design, 2015, pp. 75–85.

[21] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, Managing Technical Debt in
Software Engineering (Dagstuhl Seminar 16162), Dagstuhl Reports 6 (2016), no. 4, 110–138. Place:
Dagstuhl, Germany Publisher: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[22] Paris C. Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Arcelli Fontana, Terese Besker,
Alexander Chatzigeorgiou, Valentina Lenarduzzi, Antonio Martini, Athanasia Moschou, Ilaria Pigazz-
ini, Nyyti Saarimaki, Darius Daniel Sas, Saulo Soares de Toledo, and Angeliki Agathi Tsintzira, An
Overview and Comparison of Technical Debt Measurement Tools, IEEE Software 38 (May 2021), no. 3,
61–71.

[23] Robert Baggen, José Pedro Correia, Katrin Schill, and Joost Visser, Standardized code quality
benchmarking for improving software maintainability, Software Quality Journal 20 (June 2012), no. 2,
287–307 (en).

[24] Tibor Bakota, Péter Hegedűs, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gyimóthy, A probabilistic
software quality model, 2011 27th ieee international conference on software maintenance (icsm), 2011,
pp. 243–252.

[25] J. Bansiya and C.G. Davis, A hierarchical model for object-oriented design quality assessment, IEEE
Transactions on Software Engineering 28 (January 2002), no. 1, 4–17.

[26] Jagdish Bansiya, Automating design-pattern identification, Dr. Dobb’s journal 23 (1998), no. 6.

[27] F. Hutton Barron and Bruce E. Barrett, Decision quality using ranked attribute weights, Management
Science 42 (1996), no. 11, 1515–1523.

[28] Victor R. Basili, Software Modeling and Measurement: The Goal/Question/Metric Paradigm, Univer-
sity of Maryland at College Park, College Park, MD, USA, 1992.

[29] D. Beyer, A. Noack, and C. Lewerentz, Simple and efficient relational querying of software structures,
10th working conference on reverse engineering, 2003. wcre 2003. proceedings., 2003, pp. 216–225.

[30] James M. Bieman and Byung-Kyoo Kang, Cohesion and reuse in an object-oriented system, ACM
SIGSOFT Software Engineering Notes 20 (August 1995), no. SI, 259–262 (en).

[31] J.M. Bieman, G. Straw, H. Wang, P.W. Munger, and R.T. Alexander, Design patterns and change
proneness: an examination of five evolving systems, Proceedings. 5th international workshop on
enterprise networking and computing in healthcare industry (ieee cat. no.03ex717), 2003, pp. 40–49.

[32] D. Bijlsma, Indicators of issue handling efficiency, Master’s Thesis, 2010.

[33] A. Blewitt, A. Bundy, and I. Stark, Automatic verification of java design patterns, Proceedings 16th
annual international conference on automated software engineering (ase 2001), 2001, pp. 324–327.

317

[34] Barry Boehm and Li Guo Huang, Value-based software engineering: A case study, Computer 36 (2003),
no. 3, 33–41.

[35] C. E. Bonferroni, Il calcolo delle assicurazioni su gruppi di teste, Studi in onore del professore salvatore
ortu carboni, 1935, pp. 13–60.

[36] Cédric Bouhours, Hervé Leblanc, and Christian Percebois, Bad smells in design and design patterns,
Journal of Object Technology 8 (2009), no. 3, 43–63.

[37] Cédric Bouhours, Hervé Leblanc, and Christian Percebois, Sharing bad practices in design to improve
the use of patterns, Proceedings of the 17th conference on pattern languages of programs, 2010.

[38] Cédric Bouhours, Hervé Leblanc, and Christian Percebois, Spoiled patterns: how to extend the GoF,
Software Quality Journal (August 2014) (en).

[39] L.C. Briand, J.W. Daly, and J.K. Wust, A Unified Framework for Cohesion Measurement in Object-
Oriented Systems, Empirical Software Engineering 3 (1998), no. 1, 65–117. 10.1023/A:1009783721306.

[40] L.C. Briand, S. Morasca, and V.R. Basili, Measuring and assessing maintainability at the end of high
level design, 1993 conference on software maintenance, 1993, pp. 88–87.

[41] Lionel C. Briand, Jürgen Wüst, John W. Daly, and D. Victor Porter, Exploring the relationships
between design measures and software quality in object-oriented systems, Journal of Systems and
Software 51 (May 2000), no. 3, 245–273 (en).

[42] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe Kruchten, Erin
Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder Sangwan, Carolyn Seaman, Kevin
Sullivan, and Nico Zazworka, Managing technical debt in software-reliant systems, Proceedings of the
FSE/SDP workshop on Future of software engineering research, 2010, pp. 47–52.

[43] Dénes Bán and Rudolf Ferenc, Recognizing Antipatterns and Analyzing Their Effects on Software
Maintainability, Computational Science and Its Applications – ICCSA 2014, 2014, pp. 337–352.

[44] D. Campbell and T. D. Cook, Quasi-experimentation: Design and Analysis Issues for Field Settings,
Houghton Mifflin Company, 1979.

[45] D. Campbell and J. Stanley, Experimental and Quasi-experimental Designs for Research, Rand-
McNally, 1963.

[46] Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris Avgeriou, Assess-
ing code smell interest probability: a case study, Proceedings of the XP2017 Scientific Workshops, May
2017, pp. 1–8 (en).

[47] Alexander Chatzigeorgiou, Apostolos Ampatzoglou, Areti Ampatzoglou, and Theodoros Amanatidis,
Estimating the breaking point for technical debt, 2015 IEEE 7th International Workshop on Managing
Technical Debt (MTD), October 2015, pp. 53–56.

[48] Shyam R. Chidamber and C.F. Kemerer, Towards a metrics suite for object oriented design, 1991,
pp. 197–211 (en).

[49] S.R. Chidamber and C.F. Kemerer, A metrics suite for object oriented design, Software Engineering,
IEEE Transactions on 20 (June 1994), no. 6, 476 –493.

[50] S. Chin, E. Huddleston, W. Bodwell, and I. Gat, The Economics of Technical Debt, Cutter IT Journal
23 (2010), no. 10, 11–15.

[51] Zadia Codabux and Christopher Dutchyn, Profiling Developers Through the Lens of Technical Debt,
Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), October 2020, pp. 1–6 (en).

318

[52] Zadia Codabux and Byron Williams, Managing technical debt: An industrial case study, Managing
Technical Debt (MTD), 2013 4th International Workshop on, 2013, pp. 8–15.

[53] Zadia Codabux, Byron J. Williams, Gary L. Bradshaw, and Murray Cantor, An empirical assessment
of technical debt practices in industry, Journal of Software: Evolution and Process 29 (October 2017),
no. 10, e1894 (en).

[54] Jacob Cohen, A coefficient of agreement for nominal scales, Educational and Psychological Measure-
ment 20 (1960), no. 1, 37–46, available at https://doi.org/10.1177/001316446002000104.

[55] Jose Pedro Correia, Yiannis Kanellopoulos, and Joost Visser, A survey-based study of the mapping of
system properties to iso/iec 9126 maintainability characteristics, 2009 ieee international conference on
software maintenance, 2009, pp. 61–70.

[56] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, Design pattern recovery by visual
language parsing, Ninth european conference on software maintenance and reengineering, 2005, pp. 102–
111.

[57] , Case studies of visual language based design patterns recovery, Conference on software
maintenance and reengineering (csmr’06), 2006, pp. 10 pp.–174.

[58] Ward Cunningham, The WyCash portfolio management system, SIGPLAN OOPS Mess. 4 (December
1992), no. 2, 29–30.

[59] B. Curtis, J. Sappidi, and A. Szynkarski, Estimating the Principal of an Application’s Technical Debt,
Software, IEEE 29 (December 2012), no. 6, 34 –42.

[60] , Estimating the size, cost, and types of Technical Debt, Managing Technical Debt (MTD), 2012
Third International Workshop on, June 2012, pp. 49 –53.

[61] Melissa Dale, Impacts of Modular Grime on Technical Debt, Master’s Thesis, Bozeman, MT, 2014.

[62] Melissa R. Dale and Clemente Izurieta, Impacts of design pattern decay on system quality, Proceedings
of the 8th acm/ieee international symposium on empirical software engineering and measurement,
2014.

[63] J. de Groot, A. Nugroho, T. Back, and J. Visser, What is the value of your software?, Managing
Technical Debt (MTD), 2012 Third International Workshop on, June 2012, pp. 37 –44.

[64] George Digkas, Alexander N Chatzigeorgiou, Apostolos Ampatzoglou, and Paris C Avgeriou, Can
Clean New Code reduce Technical Debt Density, IEEE Transactions on Software Engineering (2020),
1–1.

[65] Georgios Digkas, Mircea Lungu, Paris Avgeriou, Alexander Chatzigeorgiou, and Apostolos Ampat-
zoglou, How do developers fix issues and pay back technical debt in the Apache ecosystem?, 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering (SANER), March
2018, pp. 153–163.

[66] Jing Dong, Dushyant S. Lad, and Yajing Zhao, Dp-miner: Design pattern discovery using matrix, 14th
annual ieee international conference and workshops on the engineering of computer-based systems
(ecbs’07), 2007, pp. 371–380.

[67] Jing Dong, Sheng Yang, and Kang Zhang, Visualizing Design Patterns in Their Applications and
Compositions, IEEE Transactions on Software Engineering 33 (July 2007), no. 7, 433–453.

[68] Charles W. Dunnett, A Multiple Comparison Procedure for Comparing Several Treatments with a
Control, Journal of the American Statistical Association 50 (December 1955), no. 272, 1096–1121
(en).

[69] A.H. Eden, A. Yehudai, and J. Gil, Precise specification and automatic application of design patterns,
Proceedings 12th ieee international conference automated software engineering, 1997, pp. 143–152.

https://doi.org/10.1177/001316446002000104

319

[70] Ward Edwards and F.Hutton Barron, Smarts and smarter: Improved simple methods for multiattribute
utility measurement, Organizational Behavior and Human Decision Processes 60 (1994), no. 3, 306–
325.

[71] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus, Does code decay? Assessing the
evidence from change management data, IEEE Transactions on Software Engineering 27 (January
2001), no. 1, 1–12.

[72] Eric Eide, Alastair Reid, John Regehr, and Jay Lepreau, Static and dynamic structure in design
patterns, Proceedings of the 24th international conference on software engineering, 2002, pp. 208–218.

[73] Davide Falessi, Michele A. Shaw, Forrest Shull, Kathleen Mullen, and Mark Stein Keymind, Practical
considerations, challenges, and requirements of tool-support for managing technical debt, Managing
Technical Debt (MTD), 2013 4th International Workshop on, 2013, pp. 16–19.

[74] Davide Falessi and Alexander Voegele, Validating and prioritizing quality rules for managing technical
debt: An industrial case study, 2015 IEEE 7th International Workshop on Managing Technical Debt
(MTD), October 2015, pp. 41–48.

[75] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang, Statistical power analyses using g*
power 3.1: Tests for correlation and regression analyses, Behavior research methods 41 (2009), no. 4,
1149–1160.

[76] Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou, and Elisa Y. Nakagawa, Correlating Pattern
Grime and Quality Attributes, IEEE Access 6 (2018), 23065–23078.

[77] Daniel Feitosa, Paris Avgeriou, Apostolos Ampatzoglou, and Elisa Yumi Nakagawa, The evolution of
design pattern grime: An industrial case study, Product-focused software process improvement, 2017,
pp. 165–181.

[78] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, Design pattern mining enhanced by machine learning,
21st ieee international conference on software maintenance (icsm’05), 2005, pp. 295–304.

[79] Rudolf Ferenc, Péter Hegedűs, and Tibor Gyimóthy, Software product quality models (Tom Mens,
Alexander Serebrenik, and Anthony Cleve, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[80] Carlos Fernandez-Sanchez, Juan Garbajosa, and Agustin Yague, A framework to aid in decision making
for technical debt management, 2015 IEEE 7th International Workshop on Managing Technical Debt
(MTD), October 2015, pp. 69–76.

[81] Carlos Fernandez-Sanchez, Hector Humanes, Juan Garbajosa, and Jessica Diaz, An Open Tool for
Assisting in Technical Debt Management, 2017 43rd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), August 2017, pp. 400–403.

[82] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, JDeodorant: Identification and Removal of Feature
Envy Bad Smells, Software Maintenance, 2007. ICSM 2007. IEEE International Conference on, October
2007, pp. 519 –520.

[83] F.A. Fontana, P. Braione, and M. Zanoni, Automatic detection of bad smells in code: An experimental
assessment, Journal of Object Technology 11 (2012), no. 2.

[84] F.A. Fontana, V. Ferme, and S. Spinelli, Investigating the impact of code smells debt on quality code
evaluation, Managing Technical Debt (MTD), 2012 Third International Workshop on, June 2012, pp. 15
–22.

[85] F.A. Fontana and M. Zanoni, On Investigating Code Smells Correlations, Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference on, March 2011,
pp. 474 –475.

320

[86] Francesca Arcelli Fontana, Vincenzo Ferme, Alessandro Marino, Bartosz Walter, and Pawel Martenka,
Investigating the impact of code smells on system’s quality: An empirical study on systems of different
application domains, 2013 ieee international conference on software maintenance, 2013, pp. 260–269.

[87] Francesca Arcelli Fontana, Marco Zanoni, Alessandro Marino, and Mika V. Mäntylä, Code smell
detection: Towards a machine learning-based approach, 2013 ieee international conference on software
maintenance, 2013, pp. 396–399.

[88] Martin Fowler, Kent Beck, J Brant, William Opdyke, and Don Roberts, Refactoring: Improving the
Design of Existing Programs, Addison-Weseley, 1999.

[89] John Fox and Sanford Weisberg, An R companion to applied regression, Third, Sage, Thousand Oaks
CA, 2019.

[90] R.B. France, Dae-Kyoo Kim, S. Ghosh, and Eunjee Song, A UML-based pattern specification technique,
IEEE Transactions on Software Engineering 30 (March 2004), no. 3, 193–206 (en).

[91] Savio Freire, Nicolli Rios, Boris Perez, Camilo Castellanos, Dario Correal, Robert Ramac, Vladimir
Mandic, Nebojsa Tausan, Gustavo Lopez, Alexia Pacheco, Davide Falessi, Manoel Mendonca, Clemente
Izurieta, Carolyn Seaman, and Rodrigo Spinola, How Experience Impacts Practitioners’ Perception of
Causes and Effects of Technical Debt, 2021 IEEE/ACM 13th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), May 2021, pp. 21–30.

[92] Savio Freire, Nicolli Rios, Boris Perez, Camilo Castellanos, Dario Correal, Robert Ramac, Vladimir
Mandic, Nebojsa Tausan, Alexia Pacheco, Gustavo Lopez, Manoel Mendonca, Clemente Izurieta,
Davide Falessi, Carolyn Seaman, and Rodrigo Spinola, Pitfalls and Solutions for Technical Debt
Management in Agile Software Projects, IEEE Software 38 (November 2021), no. 6, 42–49.

[93] Savio Freire, Nicolli Rios, Boris Perez, Dario Torres, Manoel Mendonca, Clemente Izurieta, Carolyn
Seaman, and Rodrigo Spinola, How do Technical Debt Payment Practices Relate to the Effects of
the Presence of Debt Items in Software Projects?, 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), March 2021, pp. 605–609.

[94] Sávio Freire, Nicolli Rios, Boris Gutierrez, Daŕıo Torres, Manoel Mendonça, Clemente Izurieta,
Carolyn Seaman, and Rodrigo O. Sṕınola, Surveying Software Practitioners on Technical Debt Payment
Practices and Reasons for not Paying off Debt Items, Proceedings of the Evaluation and Assessment
in Software Engineering, April 2020, pp. 210–219 (en).

[95] Sávio Freire, Nicolli Rios, Manoel Mendonça, Davide Falessi, Carolyn Seaman, Clemente Izurieta, and
Rodrigo O. Sṕınola, Actions and impediments for technical debt prevention: results from a global family
of industrial surveys, Proceedings of the 35th Annual ACM Symposium on Applied Computing, March
2020, pp. 1548–1555 (en).

[96] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Languages and Systems, Addison-Wesley, 1994.

[97] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, Identifying Architectural Bad Smells, Software
Maintenance and Reengineering, 2009. CSMR ’09. 13th European Conference on (March 2009), 255–
258.

[98] Matt Gatrell, Steve Counsell, and Tracy Hall, Design patterns and change proneness: A replication
using proprietary c# software, 2009 16th working conference on reverse engineering, 2009, pp. 160–164.

[99] O Gaudin, Evaluate your technical debt with Sonar, Sonar, Jun (2009).

[100] Marcela Genero, José Olivas, Mario Piattini, and Francisco Romero, Using Metrics to Predict OO
Information Systems Maintainability, Advanced Information Systems Engineering, 2001, pp. 388–401.

[101] Isaac Griffith and Clemente Izurieta, Design pattern decay: The case for class grime, Proceedings of
the 8th acm/ieee international symposium on empirical software engineering and measurement, 2014.

321

[102] Isaac Griffith, Clemente Izurieta, Hannane Taffahi, and David Claudio, A simulation study of practical
methods for technical debt management in agile software development, Proceedings of the 2014 Winter
Simulation Conference, December 2014, pp. 1014–1025.

[103] Isaac Griffith, Derek Reimanis, Clemente Izurieta, Zadia Codabux, Ajay Deo, and Byron Williams,
The correspondence between software quality models and technical debt estimation approaches, 2014
sixth international workshop on managing technical debt, 2014, pp. 19–26.

[104] Isaac Griffith, Scott Wahl, and Clemente Izurieta, Evolution of legacy system comprehensibility through
automated refactoring, Proceedings of the International Workshop on Machine Learning Technologies
in Software Engineering, 2011, pp. 35–42.

[105] , TrueRefactor: An automated refactoring tool to improve legacy system and application
comprehensibility, 24th international conference on computer applications in industry and engineering,
November 2011.

[106] Michael Grottke, Rivalino Matias, and Kishor S. Trivedi, The fundamentals of software aging, 2008
ieee international conference on software reliability engineering workshops (issre wksp), 2008, pp. 1–6.

[107] Yuepu Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F.Q.B. da Silva, A. L M Santos, and C.
Siebra, Tracking technical debt – An exploratory case study, Software Maintenance (ICSM), 2011 27th
IEEE International Conference on (2011), 528–531.

[108] Yuepu Guo and Carolyn Seaman, A portfolio approach to technical debt management, Proceedings of
the 2nd Workshop on Managing Technical Debt, 2011, pp. 31–34.

[109] Yuepu Guo, Rodrigo Oliveira Sṕınola, and Carolyn Seaman, Exploring the costs of technical debt
management – a case study, Empirical Software Engineering (November 2014) (en).

[110] Tudor Gı̂rba, Stéphane Ducasse, Adrian Kuhn, Radu Marinescu, and Raţiu Daniel, Using concept
analysis to detect co-change patterns, Ninth international workshop on Principles of software evolution:
in conjunction with the 6th ESEC/FSE joint meeting, 2007, pp. 83–89.

[111] Tudor Gı̂rba, Stéphane Ducasse, Radu Marinescu, and Raţiu Daniel, Identifying Entities That Change
Together, Ninth IEEE Workshop on Empirical Studies of Software Maintenance (WESS 2004), 2004.

[112] Tracy Hall, Min Zhang, David Bowes, and Yi Sun, Some Code Smells Have a Significant but Small
Effect on Faults, ACM Transactions on Software Engineering and Methodology 23 (September 2014),
no. 4, 1–39 (en).

[113] H.H. Hallal, E. Alikacem, W.P. Tunney, S. Boroday, and A. Petrenko, Antipattern-based detection of
deficiencies in Java multithreaded software, Quality Software, 2004. QSIC 2004. Proceedings. Fourth
International Conference on, September 2004, pp. 258 –267.

[114] Ilja Heitlager, Tobias Kuipers, and Joost Visser, A practical model for measuring maintainability, 6th
international conference on the quality of information and communications technology (quatic 2007),
2007, pp. 30–39.

[115] , A practical model for measuring maintainability, 6th international conference on the quality
of information and communications technology (quatic 2007), 2007, pp. 30–39.

[116] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe, Automatic design pattern detection, 11th ieee
international workshop on program comprehension, 2003., 2003, pp. 94–103.

[117] D. Heuzeroth, S. Mandel, and W. Lowe, Generating design pattern detectors from pattern specifications,
18th ieee international conference on automated software engineering, 2003. proceedings., 2003,
pp. 245–248.

[118] Johannes Holvitie and Ville Leppanen, DebtFlag: Technical debt management with a development
environment integrated tool, Managing Technical Debt (MTD), 2013 4th International Workshop on,
2013, pp. 20–27.

322

[119] M. Hong, Tao Xie, and Fuqing Yang, Jbooret: an automated tool to recover oo design and source models,
25th annual international computer software and applications conference. compsac 2001, 2001, pp. 71–
76.

[120] Hongbo Liu and Jiaxin Wang, A new way to enumerate cycles in graph, Advanced int’l conference on
telecommunications and int’l conference on internet and web applications and services (aict-iciw’06),
2006Feb, pp. 57–57.

[121] David Hovemeyer and William Pugh, Finding bugs is easy, SIGPLAN Not. 39 (December 2004), no. 12,
92–106.

[122] Heyuan Huang, Shensheng Zhang, Jian Cao, and Yonghong Duan, A practical pattern recovery approach
based on both structural and behavioral analysis, Journal of Systems and Software 75 (February 2005),
no. 1-2, 69–87 (en).

[123] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton, Software rejuvenation: analysis, module and
applications, Twenty-fifth international symposium on fault-tolerant computing. digest of papers, 1995,
pp. 381–390.

[124] Simo Huopio, A Quest for Indicators of Security Debt, The Cyber Defense Review 5 (2020), no. 1,
169–184. Publisher: Army Cyber Institute.

[125] ISO, ISO/IEC 9126-1:2001 Software Engineering – Product Quality – Part 1: Quality Model,
International Organization for Standardization, 2001.

[126] , ISO/IEC 25010:2011 Systems and software engineering – Systems and software Quality
REqurements and Evaluation (SQuaRE) – System and software quality models, International Standards
Organization, 2011.

[127] C. Izurieta and J.M. Bieman, How Software Designs Decay: A Pilot Study of Pattern Evolution,
Empirical Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium
on, September 2007, pp. 449 –451.

[128] , Testing Consequences of Grime Buildup in Object Oriented Design Patterns, Software Testing,
Verification, and Validation, 2008 1st International Conference on, April 2008, pp. 171 –179.

[129] C. Izurieta, I. Griffith, and C. Huvaere, An industry perspective to comparing the sqale and quamoco
software quality models, 2017 acm/ieee international symposium on empirical software engineering and
measurement (esem), 2017Nov, pp. 287–296.

[130] C. Izurieta, I. Griffith, D. Reimanis, and R. Luhr, On the Uncertainty of Technical Debt Measurements,
Information Science and Applications (ICISA), 2013 International Conference on, 2013, pp. 1–4.

[131] C. Izurieta, A. Vetro, N. Zazworka, Yuanfang Cai, C. Seaman, and F. Shull, Organizing the technical
debt landscape, Managing Technical Debt (MTD), 2012 Third International Workshop on, June 2012,
pp. 23 –26.

[132] Clemente Izurieta, Decay and grime buildup in evolving object oriented design patterns, Ph.D. Thesis,
2009.

[133] Clemente Izurieta and JamesM. Bieman, A multiple case study of design pattern decay, grime, and rot
in evolving software systems, Software Quality Journal (2012), 1–35 (English).

[134] Clemente Izurieta, Derek Reimanis, Isaac Griffith, and Travis Schanz, Structural and behavioral
taxonomies of design pattern grime, 12th seminar on advanced techniques & tools for software evolution,
July 2019.

[135] Sebastian Jancke, Smell Detection in Context, Ph.D. Thesis, 2010.

[136] Natalia Juristo and Ana M Moreno, Basics of Software Engineering Experimentation, Springer US,
Boston, MA, 2001 (English).

323

[137] O. Kaczor, Y.-G. Gueheneuc, and S. Hamel, Efficient identification of design patterns with bit-vector
algorithm, Conference on software maintenance and reengineering (csmr’06), 2006, pp. 10 pp.–184.

[138] Joshua Kerievsky, Refactoring to patterns, Pearson Deutschland GmbH, 2005.

[139] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, Design Defects Detection and
Correction by Example, Program Comprehension (ICPC), 2011 IEEE 19th International Conference
on, June 2011, pp. 81 –90.

[140] M. Kessentini, H. Sahraoui, M. Boukadoum, and M. Wimmer, Design Defect Detection Rules
Generation: A Music Metaphor, Software Maintenance and Reengineering (CSMR), 2011 15th
European Conference on, March 2011, pp. 241 –248.

[141] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Manuel Wimmer, Search-Based
Design Defects Detection by Example, Fundamental Approaches to Software Engineering, 2011,
pp. 401–415.

[142] Marouane Kessentini, Stéphane Vaucher, and Houari Sahraoui, Deviance from perfection is a better
criterion than closeness to evil when identifying risky code, Proceedings of the IEEE/ACM international
conference on Automated software engineering, 2010, pp. 113–122.

[143] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, An Exploratory Study of the Impact of Code Smells
on Software Change-proneness, Reverse Engineering, 2009. WCRE ’09. 16th Working Conference on,
October 2009, pp. 75 –84.

[144] F. Khomh, S. Vaucher, Y. G. Gueheneuc, and H. Sahraoui, A Bayesian Approach for the Detection of
Code and Design Smells, Quality Software, 2009. QSIC ’09. 9th International Conference on (August
2009), 305–314.

[145] Foutse Khomh, Squad: Software quality understanding through the analysis of design, 2009 16th working
conference on reverse engineering, 2009, pp. 303–306.

[146] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol, An exploratory
study of the impact of antipatterns on class change- and fault-proneness, Empirical Software Engineer-
ing 17 (June 2012), no. 3, 243–275 (en).

[147] D.-K. Kim and J. Whittle, Generating uml models from domain patterns, Third acis int’l conference
on software engineering research, management and applications (sera’05), 2005, pp. 166–173.

[148] Dae-Kyoo Kim, Evaluating conformance of uml models to design patterns, 10th ieee international
conference on engineering of complex computer systems (iceccs’05), 2005, pp. 30–31.

[149] Dae-Kyoo Kim and Charbel El Khawand, An approach to precisely specifying the problem domain of
design patterns, Journal of Visual Languages & Computing 18 (December 2007), no. 6, 560–591 (en).

[150] Dae-Kyoo Kim, R. France, S. Ghosh, and Eunjee Song, A role-based metamodeling approach to
specifying design patterns, Proceedings 27th annual international computer software and applications
conference. compac 2003, 2003, pp. 452–457.

[151] Dae-Kyoo Kim, Robert France, and Sudipto Ghosh, A UML-based language for specifying domain-
specific patterns, Journal of Visual Languages & Computing 15 (June 2004), no. 3-4, 265–289 (en).

[152] Dae-Kyoo Kim and Wuwei Shen, Evaluating pattern conformance of UML models: a divide-and-conquer
approach and case studies, Software Quality Journal 16 (September 2008), no. 3, 329–359 (en).

[153] S.-K. Kim and D. Carrington, Using integrated metamodeling to define oo design patterns with object-z
and uml, 11th asia-pacific software engineering conference, 2004, pp. 257–264.

[154] Tim Klinger, Peri Tarr, Patrick Wagstrom, and Clay Williams, An enterprise perspective on technical
debt, Proceedings of the 2nd Workshop on Managing Technical Debt, 2011, pp. 35–38.

324

[155] Makrina Viola Kosti, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Georgios Pallas, Ioannis
Stamelos, and Lefteris Angelis, Technical Debt Principal Assessment Through Structural Metrics, 2017
43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), August
2017, pp. 329–333.

[156] C. Kramer and L. Prechelt, Design recovery by automated search for structural design patterns in
object-oriented software, Proceedings of wcre ’96: 4rd working conference on reverse engineering, 1996,
pp. 208–215.

[157] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya, Technical Debt: From Metaphor to Theory and
Practice, Software, IEEE 29 (December 2012), no. 6, 18 –21.

[158] J. Richard Landis and Gary G. Koch, The measurement of observer agreement for categorical data,
Biometrics 33 (1977), no. 1, 159–174.

[159] Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kazman, and Hongzhou Fang, On the Lack
of Consensus Among Technical Debt Detection Tools, 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), May 2021, pp. 121–130.

[160] J. Letouzey and M. Ilkiewicz, Managing Technical Debt with the SQALE Method, Software, IEEE 29
(December 2012), no. 6, 44 –51.

[161] J.-L. Letouzey, The SQALE method for evaluating Technical Debt, Managing Technical Debt (MTD),
2012 Third International Workshop on, June 2012, pp. 31 –36.

[162] Howard Levene, Robust tests for equality of variances1, Contributions to probability and statistics:
Essays in honor of Harold Hotelling 2 (1960), 278–292.

[163] Wei Li and Sallie Henry, Object-oriented metrics that predict maintainability, Journal of Systems and
Software 23 (November 1993), no. 2, 111–122 (en).

[164] Zengyang Li, Paris Avgeriou, and Peng Liang, A systematic mapping study on technical debt and its
management, Journal of Systems and Software 101 (2015), 193–220.

[165] Hui Liu, Zhiyi Ma, Weizhong Shao, and Zhendong Niu, Schedule of Bad Smell Detection and Resolution:
A New Way to Save Effort, Software Engineering, IEEE Transactions on 38 (February 2012), no. 1,
220 –235.

[166] M.T. Llano and R. Pooley, UML Specification and Correction of Object-Oriented Anti-patterns,
Software Engineering Advances, 2009. ICSEA ’09. Fourth International Conference on, September
2009, pp. 39 –44.

[167] Mark Lorenz and Jeff Kidd, Object-oriented software metrics: a practical guide, Prentice Hall object-
oriented series, PTR Prentice Hall, Englewood Cliffs, NJ, 1994.

[168] Lunjin Lu and Dae-Kyoo Kim, Required behavior of sequence diagrams: Semantics and refinement,
2011 16th ieee international conference on engineering of complex computer systems, 2011, pp. 127–
136.

[169] , Required behavior of sequence diagrams: Semantics and conformance, ACM Transactions on
Software Engineering and Methodology 23 (March 2014), no. 2, 1–28 (en).

[170] Bart Luijten and Joost Visser, Faster defect resolution with higher technical quality of software,
Technical Report Series TUD-SERG-2010-006 (2010).

[171] Yixin Luo, A. Hoss, and D.L. Carver, An ontological identification of relationships between anti-patterns
and code smells, Aerospace Conference, 2010 IEEE, March 2010, pp. 1 –10.

[172] Rim Mahouachi, Marouane Kessentini, and Khaled Ghedira, A New Design Defects Classification:
Marrying Detection and Correction, Fundamental Approaches to Software Engineering, 2012, pp. 455–
470.

325

[173] Somayeh Malakuti and Sergey Ostroumov, The Quest for Introducing Technical Debt Management in
a Large-Scale Industrial Company, Software Architecture, 2020, pp. 296–311 (en). Series Title: Lecture
Notes in Computer Science.

[174] Vladimir Mandic, Nebojsa Tausan, Robert Ramac, Savio Freire, Nicolli Rios, Boris Perez, Camilo
Castellanos, Dario Correal, Alexia Pacheco, Gustavo Lopez, Clemente Izurieta, Davide Falessi, Carolyn
Seaman, and Rodrigo Spinola, Technical and Nontechnical Prioritization Schema for Technical Debt:
Voice of TD-Experienced Practitioners, IEEE Software 38 (November 2021), no. 6, 50–58.

[175] Vladimir Mandić, Neboǰsa Taušan, and Robert Ramač, The prevalence of the technical debt concept in
serbian it industry: Results of a national-wide survey, Proceedings of the 3rd international conference
on technical debt, 2020, pp. 77–86.

[176] Usman Mansoor, Marouane Kessentini, Slim Bechikh, and Kalyanmoy Deb, Code-smells detection
using good and bad software design examples, Technical report, Technical Report, 2013.

[177] M. Mantyla, J. Vanhanen, and C. Lassenius, A taxonomy and an initial empirical study of bad smells in
code, Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference on, September
2003, pp. 381 –384.

[178] Salvatore T. March and Gerald F. Smith, Design and natural science research on information
technology, Decision Support Systems 15 (1995), no. 4, 251–266.

[179] R. Marinescu, Detection strategies: metrics-based rules for detecting design flaws, Software Mainte-
nance, 2004. Proceedings. 20th IEEE International Conference on, September 2004, pp. 350 –359.

[180] , Assessing technical debt by identifying design flaws in software systems, IBM Journal of
Research and Development 56 (October 2012), no. 5, 9:1 –9:13.

[181] Radu Marinescu, Assessing and Improving Object-Oriented Design (2012).

[182] R.C. Martin, Oo design quality metrics–an analysis of dependencies, Proceedings of the workshop
pragmatic and theoretical directions in object-oriented software metrics, October 1994.

[183] , Agile software development: principles, patterns, and practices, Prentice Hall PTR, 2003.

[184] Jabier Martinez, Nuria Quintano, Alejandra Ruiz, Izaskun Santamaria, Iker Martinez de Soria, and
Jose Arias, Security Debt: Characteristics, Product Life-Cycle Integration and Items, 2021 IEEE/ACM
International Conference on Technical Debt (TechDebt), May 2021, pp. 1–5.

[185] Antonio Martini and Jan Bosch, The magnificent seven: towards a systematic estimation of technical
debt interest, Proceedings of the XP2017 Scientific Workshops, May 2017, pp. 1–5 (en).

[186] Antonio Martini, Jan Bosch, and Michel Chaudron, Architecture technical debt: Understanding causes
and a qualitative model, 2014 40th euromicro conference on software engineering and advanced
applications, 2014, pp. 85–92.

[187] , Investigating Architectural Technical Debt accumulation and refactoring over time: A multiple-
case study, Information and Software Technology 67 (November 2015), 237–253 (en).

[188] Antonio Martini, Simon Vajda, Rajesh Vasa, Allan Jones, Mohamed Abdelrazek, John Grundy, and
Jan Bosch, Technical debt interest assessment: from issues to project, Proceedings of the XP2017
Scientific Workshops, May 2017, pp. 1–6 (en).

[189] Mitin Mathur, Java Smell Detector, Ph.D. Thesis, 2011.

[190] T.J. McCabe, A complexity measure, IEEE Transactions on Software Engineering SE-2 (1976Dec),
no. 4, 308–320.

[191] Steve McConnell, Managing Technical Debt, Technical Report 1, Construx, 2008.

326

[192] T. Mens and T. Tourwe, A declarative evolution framework for object-oriented design patterns,
Proceedings ieee international conference on software maintenance. icsm 2001, 2001, pp. 570–579.

[193] T. Miceli, H.A. Sahraoui, and R. Godin, A metric based technique for design flaws detection and
correction, Automated Software Engineering, 1999. 14th IEEE International Conference on., October
1999, pp. 307 –310.

[194] P.F. Mihancea and R. Marinescu, Towards the Optimization of Automatic Detection of Design Flaws
in Object-Oriented Software Systems, Software Maintenance and Reengineering, 2005. CSMR 2005.
Ninth European Conference on, March 2005, pp. 92 –101.

[195] T. Mikkonen, Formalizing design patterns, Proceedings of the 20th international conference on software
engineering, 1998, pp. 115–124.

[196] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, DECOR: A Method for the Specification
and Detection of Code and Design Smells, Software Engineering, IEEE Transactions on 36 (February
2010), no. 1, 20 –36.

[197] N. Moha, Y.-G. Gueheneuc, and P. Leduc, Automatic Generation of Detection Algorithms for Design
Defects, Automated Software Engineering, 2006. ASE ’06. 21st IEEE/ACM International Conference
on, September 2006, pp. 297 –300.

[198] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Françoise Le Meur, and Laurence Duchien, A Domain
Analysis to Specify Design Defects and Generate Detection Algorithms, Fundamental Approaches to
Software Engineering, 2008, pp. 276–291.

[199] Moha, Naouel, Huynh, Duc-loc, and Guéhéneuc Y-G, A Taxonomy and a First Study of Design
Pattern Defects, IEEE International Workshop on Software Technology and Engineering Practice,
2005, pp. 225–229.

[200] M.J. Munro, Product metrics for automatic identification of ”bad smell” design problems in java source-
code, 11th ieee international software metrics symposium (metrics’05), 2005, pp. 15–15.

[201] Mika Mäntylä, Bad Smells in Software – a Taxonomy and an Empirical Study, Ph.D. Thesis, 2003.

[202] R.L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, In Search of a Metric for Managing
Architectural Technical Debt, Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on, 2012, pp. 91–100.

[203] Ariadi Nugroho, Joost Visser, and Tobias Kuipers, An empirical model of technical debt and interest,
Proceedings of the 2nd Workshop on Managing Technical Debt, 2011, pp. 1–8.

[204] Felix Ocker, Matthias Seitz, Marius Oligschlager, Minjie Zou, and Birgit Vogel-Heuser, Increasing
Awareness for Potential Technical Debt in the Engineering of Production Systems, 2019 IEEE 17th
International Conference on Industrial Informatics (INDIN), July 2019, pp. 478–484.

[205] M.C. Ohlsson, A. von Mayrhauser, B. McGuire, and C. Wohlin, Code decay analysis of legacy software
through successive releases, 1999 ieee aerospace conference. proceedings (cat. no.99th8403), 1999,
pp. 69–81 vol.5.

[206] S.M. Olbrich, D.S. Cruzes, and D.I.K. Sjoberg, Are all code smells harmful? A study of God Classes
and Brain Classes in the evolution of three open source systems, Software Maintenance (ICSM), 2010
IEEE International Conference on, September 2010, pp. 1 –10.

[207] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka, The evolution and impact of
code smells: A case study of two open source systems, 2009 3rd international symposium on empirical
software engineering and measurement, 2009, pp. 390–400.

[208] Ali Ouni, Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum, Maintainability defects
detection and correction: a multi-objective approach, Automated Software Engineering 20 (March
2013), no. 1, 47–79 (en).

327

[209] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys
Poshyvanyk, Detecting bad smells in source code using change history information, 2013 28th ieee/acm
international conference on automated software engineering (ase), 2013, pp. 268–278.

[210] David Lorge Parnas, Software Aging, Proceedings of the 16th International Conference on Software
Engineering. ICSE’97 (May 1994), 279–287.

[211] B lażej Pietrzak and Bartosz Walter, Leveraging Code Smell Detection with Inter-smell Relations,
Extreme Programming and Agile Processes in Software Engineering, 2006, pp. 75–84.

[212] I. Polasek, P. Liska, J. Kelemen, and J. Lang, On extended Similarity Scoring and Bit-vector Algorithms
for design smell detection, Intelligent Engineering Systems (INES), 2012 IEEE 16th International
Conference on, June 2012, pp. 115 –120.

[213] Boris Pérez, Juan Pablo Brito, Hernán Astudillo, Daŕıo Correal, Nicolli Rios, Rodrigo Oliveira Sṕınola,
Manoel Mendonça, and Carolyn Seaman, Familiarity, causes and reactions of software practitioners
to the presence of technical debt: A replicated study in the chilean software industry, 2019 38th
international conference of the chilean computer science society (sccc), 2019, pp. 1–7.

[214] Boris Pérez, Camilo Castellanos, Daŕıo Correal, Nicolli Rios, Sávio Freire, Rodrigo Sṕınola, Carolyn
Seaman, and Clemente Izurieta, Technical debt payment and prevention through the lenses of software
architects, Information and Software Technology 140 (December 2021), 106692 (en).

[215] Narayan Ramasubbu and Chris F. Kemerer, Towards a model for optimizing technical debt in software
products, Managing Technical Debt (MTD), 2013 4th International Workshop on, 2013, pp. 51–54.

[216] Robert Ramač, Vladimir Mandić, Neboǰsa Taušan, Nicolli Rios, Manoel G. de Mendonca Neto, Carolyn
Seaman, and Rodrigo Oliveira Sṕınola, Common causes and effects of technical debt in serbian it:
Insightd survey replication, 2020 46th euromicro conference on software engineering and advanced
applications (seaa), 2020, pp. 354–361.

[217] D. Rapu, S. Ducasse, T. Girba, and R. Marinescu, Using history information to improve design flaws
detection, Software Maintenance and Reengineering, 2004. CSMR 2004. Proceedings. Eighth European
Conference on, March 2004, pp. 223 –232.

[218] D. Ratiu, R. Marinescu, S. Ducasse, and T. Gırba, Evolution-enriched detection of god classes, Proc.
of the 2nd CAVIS (2004), 3–7.

[219] Derek Reimanis and Clemente Izurieta, Towards assessing the technical debt of undesired software
behaviors in design patterns, 2016 ieee 8th international workshop on managing technical debt (mtd),
2016, pp. 24–27.

[220] , Behavioral Evolution of Design Patterns: Understanding Software Reuse Through the Evolu-
tion of Pattern Behavior, Reuse in the Big Data Era, 2019, pp. 77–93 (en).

[221] Kalle Rindell and Johannes Holvitie, Security Risk Assessment and Management as Technical Debt,
2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security),
June 2019, pp. 1–8.

[222] Nicolli Rios, Savio Freire, Boris Perez, Camilo Castellanos, Dario Correal, Manoel Mendonca, Davide
Falessi, Clemente Izurieta, Carolyn B. Seaman, and Rodrigo Oliveira Spinola, On the Relationship
Between Technical Debt Management and Process Models, IEEE Software 38 (September 2021), no. 5,
56–64.

[223] Nicolli Rios, Leonardo Mendes, Cristina Cerdeiral, Ana Patŕıcia F. Magalhães, Boris Perez, Daŕıo
Correal, Hernán Astudillo, Carolyn Seaman, Clemente Izurieta, Gleison Santos, and Rodrigo
Oliveira Sṕınola, Hearing the voice of software practitioners on causes, effects, and practices to deal
with documentation debt, Requirements engineering: Foundation for software quality, 2020, pp. 55–70.

328

[224] Nicolli Rios, Manoel G Mendonça, Carolyn Seaman, and Rodrigo O Sṕınola, Causes and effects of the
presence of technical debt in agile software projects (2019).

[225] Nicolli Rios, Manoel Gomes de Mendonça Neto, and Rodrigo Oliveira Sṕınola, A tertiary study on
technical debt: Types, management strategies, research trends, and base information for practitioners,
Information and Software Technology 102 (October 2018), 117–145 (en).

[226] Nicolli Rios, Rodrigo Oliveira Spinola, Manoel Mendonca, and Carolyn Seaman, Supporting Analysis
of Technical Debt Causes and Effects with Cross-Company Probabilistic Cause-Effect Diagrams, 2019
IEEE/ACM International Conference on Technical Debt (TechDebt), May 2019, pp. 3–12.

[227] Nicolli Rios, Rodrigo Oliveira Sṕınola, Manoel Mendonça, and Carolyn Seaman, The most common
causes and effects of technical debt: first results from a global family of industrial surveys, Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
October 2018, pp. 1–10 (en).

[228] Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh, Analyzing the impact of
antipatterns on change-proneness using fine-grained source code changes, 2012 19th working conference
on reverse engineering, 2012, pp. 437–446.

[229] Naveen Roperia, JSmell: A Bad Smell Detection Tool for Java Systems, Ph.D. Thesis, 2009.

[230] Per Runeson (ed.), Case study research in software engineering: guidelines and examples, Wiley,
Hoboken, N.J, 2012.

[231] Nyyti Saarimaki, Maria Teresa Baldassarre, Valentina Lenarduzzi, and Simone Romano, On the
Accuracy of SonarQube Technical Debt Remediation Time, 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), August 2019, pp. 317–324.

[232] M. Salehie, Shimin Li, and L. Tahvildari, A Metric-Based Heuristic Framework to Detect Object-
Oriented Design Flaws, 2006.

[233] Jay Sappidi, Bill Curtis, and Alexandra Szynkarski, The CRASH Report – 2011/12: Summary of Key
Findings, CAST Research Labs, 2012.

[234] Travis Schanz and Clemente Izurieta, Object oriented design pattern decay: a taxonomy, Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement,
2010, pp. 7:1–7:8.

[235] Klaus Schmid, A formal approach to technical debt decision making, Proceedings of the 9th international
ACM Sigsoft conference on Quality of software architectures, 2013, pp. 153–162.

[236] , On the limits of the technical debt metaphor some guidance on going beyond, Managing
Technical Debt (MTD), 2013 4th International Workshop on, 2013, pp. 63–66.

[237] , Technical Debt – From Metaphor to Engineering Guidance: A Novel Approach based on
Cost Estimation, Technical Report 1/2013, SSE 1/13/E, Institute of Computer Science, University
of Hildesheim, 2013 (English).

[238] Jan Schumacher, Nico Zazworka, Forrest Shull, Carolyn Seaman, and Michele Shaw, Building empirical
support for automated code smell detection, Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, 2010, pp. 8:1–8:10.

[239] Carolyn Seaman and Yuepu Guo, Measuring and monitoring technical debt, Advances in Computers
82 (2011), 25–46.

[240] Jochen Seemann and Jürgen Wolff von Gudenberg, Pattern-based design recovery of Java software,
ACM SIGSOFT Software Engineering Notes 23 (November 1998), no. 6, 10–16 (en).

[241] Nija Shi and Ronald A. Olsson, Reverse engineering of design patterns from java source code, 21st
ieee/acm international conference on automated software engineering (ase’06), 2006, pp. 123–134.

329

[242] Miltiadis G. Siavvas, Kyriakos C. Chatzidimitriou, and Andreas L. Symeonidis, QATCH - An adaptive
framework for software product quality assessment, Expert Systems with Applications 86 (November
2017), 350–366 (en).

[243] Vallary Singh, Will Snipes, and Nicholas A. Kraft, A framework for estimating interest on technical
debt by monitoring developer activity related to code comprehension, 2014 sixth international workshop
on managing technical debt, 2014, pp. 27–30.

[244] Dag I.K. Sjoberg, Aiko Yamashita, Bente C.D. Anda, Audris Mockus, and Tore Dyba, Quantifying the
Effect of Code Smells on Maintenance Effort, IEEE Transactions on Software Engineering 39 (August
2013), no. 8, 1144–1156.

[245] J.M. Smith and D. Stotts, Spqr: flexible automated design pattern extraction from source code, 18th ieee
international conference on automated software engineering, 2003. proceedings., 2003, pp. 215–224.

[246] Mohamed Soliman, Paris Avgeriou, and Yikun Li, Architectural design decisions that incur technical
debt — An industrial case study, Information and Software Technology 139 (November 2021), 106669
(en).

[247] N. Soundarajan and J.O. Hallstrom, Responsibilities and rewards: specifying design patterns, Proceed-
ings. 26th international conference on software engineering, 2004, pp. 666–675.

[248] Armando Sousa, Lincoln Rocha, Ricardo Britto, Zhixiong Gong, and Feng Lyu, Technical Debt in
Large-Scale Distributed Projects: An Industrial Case Study, 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), March 2021, pp. 590–594.

[249] Robert G. D. Steel, A Multiple Comparison Sign Test: Treatments Versus Control, Journal of the
American Statistical Association 54 (December 1959), no. 288, 767.

[250] Marek G Stochel, Mariusz R Wawrowski, and Magdalena Rabiej, Value-Based Technical Debt Model
and Its Application, ICSEA 2012, The Seventh International Conference on Software Engineering
Advances, 2012, pp. 205–212.

[251] Shane Strasser, Colt Frederickson, Kevin Fenger, and Clemente Izurieta, An automated software tool
for validating design patterns, Isca 24th international conference on computer applications in industry
and engineering. caine, 2011.

[252] D. Streitferdt, C. Heller, and I. Philippow, Searching design patterns in source code, 29th annual
international computer software and applications conference (compsac’05), 2005, pp. 33–34 Vol. 1.

[253] Peter Strečanský, Stanislav Chren, and Bruno Rossi, Comparing maintainability index, SIG Method,
and SQALE for technical debt identification, Proceedings of the 35th Annual ACM Symposium on
Applied Computing, March 2020, pp. 121–124 (en).

[254] Toufik Taibi and David Chek Ling Ngo, Formal specification of design pattern combination using BPSL,
Information and Software Technology 45 (March 2003), no. 3, 157–170 (en).

[255] E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li, M. Lumpe, H. Melton, and J. Noble, The Qualitas
Corpus: A Curated Collection of Java Code for Empirical Studies, Software Engineering Conference
(APSEC), 2010 17th Asia Pacific, December 2010, pp. 336–345.

[256] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S. Bigonha, Qualitas.class
corpus: A compiled version of the qualitas corpus, SIGSOFT Softw. Eng. Notes 38 (August 2013),
no. 5, 1–4.

[257] Ted Theodoropoulos, Mark Hofberg, and Daniel Kern, Technical debt from the stakeholder perspective,
Proceedings of the 2nd Workshop on Managing Technical Debt, 2011, pp. 43–46.

[258] Edith Tom, A. Aurum, and Richard Vidgen, An exploration of technical debt, Journal of Systems and
Software 0 (2013).

330

[259] P. Tonella and G. Antoniol, Object oriented design pattern inference, Proceedings ieee international
conference on software maintenance - 1999 (icsm’99). ’software maintenance for business change’ (cat.
no.99cb36360), 1999, pp. 230–238.

[260] A. Trifu and R. Marinescu, Diagnosing design problems in object oriented systems, Reverse Engineering,
12th Working Conference on, November 2005, pp. 10 pp.

[261] K.S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova, Modeling and analysis of software aging
and rejuvenation, Proceedings 33rd annual simulation symposium (ss 2000), 2000, pp. 270–279.

[262] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, JDeodorant: Identification and Removal of Type-
Checking Bad Smells, Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European
Conference on, April 2008, pp. 329 –331.

[263] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros Halkidis, Design
Pattern Detection Using Similarity Scoring, IEEE Transactions on Software Engineering 32 (November
2006), no. 11, 896–909.

[264] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, Andrea
De Lucia, and Denys Poshyvanyk, When and Why Your Code Starts to Smell Bad, 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, May 2015, pp. 403–414.

[265] Eva van Emden and Leon Moonen, Java Quality Assurance by Detecting Code Smells, Proceedings of
the 9th Working Conference on Reverse Engineering, October 2002.

[266] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger, On The Detection of Test Smells: A Metrics-
Based Approach for General Fixture and Eager Test, Software Engineering, IEEE Transactions on 33
(December 2007), no. 12, 800 –817.

[267] Reinier Vis, Dennis Bijlsma, and Haiyun Xu, Evaluation criteria trusted product maintainability, SIG,
2021.

[268] , SIG/TUVIT evaluation criteria trusted product maintainability: Guidance for producers, SIG,
2021.

[269] Stefan Wagner, Software Product Quality Control, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013
(en).

[270] Stefan Wagner, Klaus Lochmann, Lars Heinemann, Michael Kläs, Adam Trendowicz, Reinhold Plösch,
Andreas Seidi, Andreas Goeb, and Jonathan Streit, The quamoco product quality modelling and
assessment approach, 2012 34th international conference on software engineering (icse), 2012, pp. 1133–
1142.

[271] Stephan Wagner, Lochmann Klaus, Sebastian Winter, Florian Deissenboeck, Elmar Juergens, Markus
Herrmannsdoerfer, Lars Heinemann, Michael Kläs, Adam Trendowicz, Jens Heidrich, Reinhold Ploesch,
Andreas Goeb, Christian Koemer, Korbinian Schoder, Jonathan Streit, and Christian Schubert, The
quamoco quality meta-model, Institut für Informatik, Technische Universität München, 2016.

[272] Bartosz Walter and B lażej Pietrzak, Multi-criteria Detection of Bad Smells in Code with UTA Method,
Extreme Programming and Agile Processes in Software Engineering 3556 (2005), 1159–1161.

[273] Wei Wang and Vassilios Tzerpos, Design pattern detection in eiffel systems, 12th working conference
on reverse engineering (wcre’05), 2005, pp. 10 pp.–174.

[274] Lothar Wendehals, Improving design pattern instance recognition by dynamic analysis, Proc. of the
ICSE 2003 Workshop on Dynamic Analysis (WODA), Portland, USA, 2003, pp. 29–32.

[275] Roel Wieringa, Design science methodology for information systems and software engineering, Springer,
Berlin New York Dordrecht, 2014 (eng). OCLC: 931607131.

331

[276] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders Wesslén,
Experimentation in Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012 (en).

[277] S. Wong, Yuanfang Cai, Miryung Kim, and M. Dalton, Detecting software modularity violations,
Software Engineering (ICSE), 2011 33rd International Conference on, May 2011, pp. 411 –420.

[278] Lu Xiao, Quantifying architectural debts, Proceedings of the 2015 10th joint meeting on foundations of
software engineering, 2015, pp. 1030–1033.

[279] Gueheneuc Y-G, H. Sahraoui, and F. Zaidi, Fingerprinting design patterns, 11th working conference
on reverse engineering, 2004, pp. 172–181.

[280] Aiko Yamashita, Assessing the capability of code smells to explain maintenance problems: an empirical
study combining quantitative and qualitative data, Empirical Software Engineering 19 (August 2014),
no. 4, 1111–1143 (en).

[281] Aiko Yamashita and Steve Counsell, Code smells as system-level indicators of maintainability: An
empirical study, Journal of Systems and Software 86 (October 2013), no. 10, 2639–2653 (en).

[282] Aiko Yamashita and Leon Moonen, Do code smells reflect important maintainability aspects?, 2012
28th ieee international conference on software maintenance (icsm), 2012, pp. 306–315.

[283] , Exploring the impact of inter-smell relations on software maintainability: An empirical study,
2013 35th international conference on software engineering (icse), 2013, pp. 682–691.

[284] , To what extent can maintenance problems be predicted by code smell detection? – An empirical
study, Information and Software Technology 55 (December 2013), no. 12, 2223–2242 (en).

[285] Robert K. Yin, Case study research: design and methods, 4th ed, Applied social research methods,
Sage Publications, Los Angeles, Calif, 2009.

[286] Edward Yourdon and Larry L. Constantine, Structured design: fundamentals of a discipline of computer
program and systems design, Prentice Hall, Englewood Cliffs, N.J, 1979.

[287] Nico Zazworka and Christopher Ackermann, CodeVizard: a tool to aid the analysis of software evolution,
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, 2010, pp. 63:1–63:1.

[288] Nico Zazworka, Carolyn Seaman, and Forrest Shull, Prioritizing design debt investment opportunities,
Proceedings of the 2nd Workshop on Managing Technical Debt, 2011, pp. 39–42.

[289] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman, Investigating the impact of
design debt on software quality, Proceedings of the 2nd Workshop on Managing Technical Debt, 2011,
pp. 17–23.

[290] Nico Zazworka, Antonio Vetro, Clemente Izurieta, Sunny Wong, Yuanfang Cai, Carolyn Seaman, and
Forrest Shull, Comparing Four Approaches for Technical Debt Identification, Software Quality Journal
(2012).

[291] Zhi-Xiang Zhang, Qing-Hua Li, and Ke-Rong Ben, A new method for design pattern mining, Proceed-
ings of 2004 international conference on machine learning and cybernetics (ieee cat. no.04ex826), 2004,
pp. 1755–1759 vol.3.

332

APPENDIX A

PGCL DEFINITIONS

333

A.1 (Object) Adapter

start_pattern: basic
start_type: ConcreteAdapter
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

start_method: Request
public void [[name]]() {

[[adaptee.name]].[[Adaptee.SpecificRequest.random]]();
}
end_method: Request

[[methods]]
}
end_type: ConcreteAdapter
end_pattern: basic

A.2 Bridge

start_pattern: basic
start_type: Abstraction
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

start_method: Operation
public void [[name]]() {

[[imp.name]].[[Implementor.OperationImpl.name]]();
}
end_method: Operation
[[methods]]

}
end_type: Abstraction

start_type: ConcreteImplementor
import java.util.*;

/**
[[ClassComment]]

334

*/
[[typedef]] {

[[fields]]

start_method: OperationImpl
public void [[name]]() {

System.out.println("Executing [[name]]...");
}
end_method: OperationImpl
[[methods]]

}
end_type: ConcreteImplementor
end_pattern: basic

A.3 Chain of Responsibility

start_pattern: basic
start_type: Handler
/**
[[ClassComment]]

*/
[[typedef]] {

start_field: succ
protected [[Handler.name]] [[succ.name]];
end_field: succ

[[fields]]

start_method: HandleRequest
public void [[name]]() {

[[succ.name]].[[name]]();
}
end_method: HandleRequest
[[methods]]

}
end_type: Handler
end_pattern: basic

335

A.4 Command

start_pattern: basic
start_type: ConcreteCommand
/**
[[ClassComment]]

*/
[[typedef]] {

start_field: r
private [[Receiver.name]] [[r.name]];
end_field: r

[[fields]]

start_method: Execute
public void [[name]]() {

[[r.name]].[[Receiver.Action.name]]();
}
end_method: Execute
[[methods]]

public [[InstName]]([[Receiver.name]] rcvr) {
this.[[r.name]] = rcvr;

}
}
end_type: ConcreteCommand

start_type: Command
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]

}
end_type: Command

start_type: AbstractCommand
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]

336

}
end_type: AbstractCommand

start_type: Client
/**
[[ClassComment]]

*/
[[typedef]] {

start_field: rcvr
private [[Receiver.name]] [[rcvr.name]];
end_field: rcvr

[[fields]]

public [[InstName]]() {
[[rcvr.name]] = new [[Receiver.random]]();
[[Command.name]] cmd = new [[ConcreteCommand.random]]([[rcvr.name]]);

}

[[methods]]
}
end_type: Client
end_pattern: basic

A.5 Composite

start_pattern: basic
start_type: ConcreteComposite
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

start_field: children
List<[[Composite.root]]> [[name]] = new ArrayList<>();
end_field: children
[[fields]]

start_method: Add
public void [[name]]([[params]]) {

if ([[param.c]] != null)
[[children.name]].add([[param.c]]);

}
end_method: Add

start_method: Remove

337

public void [[name]]([[params]]) {
if ([[param.c]] != null)

[[children.name]].remove([[param.c]]);
}
end_method: Remove

start_method: GetChild
public [[type]] [[name]]([[params]]) {

return [[children.name]].get([[param.index]]);
}
end_method: GetChild
[[methods]]

}
end_type: ConcreteComposite
end_pattern: basic

A.6 Decorator

start_pattern: basic
start_type: ConcreteDecorator
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]
start_method: Operation
public void [[name]]() {

super.[[name]]();
[[AddedBehavior.name]]();

}
end_method: Operation

public [[InstName]]([[Component.name]] component) {
super(component);

}
}
end_type: ConcreteDecorator

start_type: Decorator
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

338

start_field: absComp
protected [[Component.name]] [[absComp.name]];
end_field: absComp

[[fields]]

[[methods]]
start_method: Operation
public void [[name]]() {

[[absComp.name]].[[name]]();
}
end_method: Operation

public [[InstName]]([[Component.name]] component) {
this.[[absComp.name]] = component;

}
}
end_type: Decorator

start_type: AbstractDecorator
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]

public [[InstName]]([[Component.name]] component) {
super(component);

}
}
end_type: AbstractDecorator
end_pattern: basic

A.7 Factory Method

start_pattern: basic
start_type: ConcreteCreator
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

339

[[fields]]

start_method: FactoryMethod
public [[Product.name]] [[name]]() {

return new [[ConcreteProduct.random]]();
}
end_method: FactoryMethod
[[methods]]

}
end_type: ConcreteCreator

start_type: ConcreteProduct
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]
}
end_type: ConcreteProduct
end_pattern: basic

A.8 Flyweight

start_pattern: basic
start_type: FlyweightFactory
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]
start_field: flyweights
List<[[Flyweight.name]]> [[flyweights.name]] = new ArrayList<>();
end_field: flyweights

[[methods]]
start_method: GetFlyweight
public [[Flyweight.name]] [[name]](int key) {

if ([[flyweights.name]].size() > key && [[flyweights.name]].get(key)
!= null) {

return [[flyweights.name]].get(key);
} else {

[[Flyweight.name]] temp = new [[ConcreteFlyweight.random]]();
[[flyweights.name]].add(temp);
return temp;

340

}
}
end_method: GetFlyweight

}
end_type: FlyweightFactory
end_pattern: basic

A.9 Observer

start_pattern: basic
start_type: ConcreteObserver
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]
}
end_type: ConcreteObserver

start_type: Subject
import java.util.*;

/**
[[ClassComment]]

*/
[[typedef]] {

start_field: obs
protected List<[[Observer.name]]> [[obs.name]] = new ArrayList<>();
end_field: obs

[[fields]]

start_method: Attach
public void [[name]]([[params]]) {

if ([[param.obsv]] != null)
[[obs.name]].add([[param.obsv]]);

}
end_method: Attach

start_method: Detach
public void [[name]]([[params]]) {

if ([[param.obsv]] != null)
[[obs.name]].remove([[param.obsv]]);

}
end_method: Detach

341

start_method: Notify
public void [[name]]() {

for ([[Observer.name]] item : [[obs.name]])
item.[[Observer.Update.name]]();

}
end_method: Notify
[[methods]]

}
end_type: Subject

end_pattern: basic

A.10 Prototype

start_pattern: basic
start_type: Client
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]
start_method: Operation
public void [[name]]() {

[[proto.name]].[[Clone.name]]();
}
end_method: Operation

}
end_type: Client

start_type: ConcretePrototype
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]
start_method: Clone
public [[Prototype.name]] [[name]]() {

return new [[InstName]]();
}
end_method: Clone

}
end_type: ConcretePrototype
end_pattern: basic

342

A.11 Proxy

start_pattern: basic
start_type: Proxy
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

[[methods]]
start_method: Request
public void [[name]]() {

[[prox.name]].[[name]]();
}
end_method: Request

}
end_type: Proxy
end_pattern: basic

A.12 Singleton

start_pattern: LazyInit
start_type: Singleton
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

protected [[InstName]]() {}

[[methods]]
}
end_type: Singleton

start_type: ConcreteSingleton
/**
[[ClassComment]]

*/
[[typedef]] {

start_field: uniqueInstance
private static [[Singleton.name]] [[uniqueInstance.name]];
end_field: uniqueInstance
[[fields]]

343

private [[InstName]]() {
super();

}

start_method: GetInstance
public static [[Singleton.name]] [[name]]() {

if ([[uniqueInstance.name]] == null)
[[uniqueInstance.name]] = new [[InstName]]();

return [[uniqueInstance.name]];
}
end_method: GetInstance

[[methods]]
}
end_type: ConcreteSingleton
end_pattern: LazyInit

A.13 State

start_pattern: adjacencyList
start_type: Context
/**
[[ClassComment]]

*/
[[typedef]] {

start_field: currentState
private [[State.root]] [[currentState.name]];
end_field: currentState

[[fields]]

public [[InstName]]() {
[[currentState.name]] = [[ConcreteState.random]].instance(this);

}

public void changeCurrentState([[State.root]] state) {
this.[[currentState.name]] = state;

}

start_method: Request
public void [[name]]() {

[[currentState.name]].[[Handle.name]]();
}
end_method: Request
[[methods]]

}
end_type: Context

start_type: ConcreteState

344

/**
[[ClassComment]]

*/
[[typedef]] {

private static [[name]] instance;
private [[Context.name]] context;
[[fields]]

private [[name]]([[Context.name]] ctx) {
this.context = ctx;

}

public static [[InstName]] instance([[Context.name]] ctx) {
if (instance == null) {

instance = new [[InstName]](ctx);
}
return instance;

}

public void run() {}

start_method: Handle
/**
*
*/
@Override
public void [[name]]() {

context.changeCurrentState([[ConcreteState.random]].instance(context))
;
}
end_method: Handle

[[methods]]
}
end_type: ConcreteState
end_pattern: adjacencyList

A.14 Strategy

start_pattern: basic
start_type: Context
/**
[[ClassComment]]

*/
[[typedef]] {

start_field: currentStrategy
private [[Strategy.root]] [[name]];
end_field: currentStrategy

345

[[fields]]

start_method: ContextOperation
public void [[name]]() {

System.out.println("Operation");
}
end_method: ContextOperation
[[methods]]

}
end_type: Context

start_type: ConcreteStrategy
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

start_method: Operation
/**
*
*/
@Override
public void [[name]]() {
}
end_method: Operation

start_method: StrategyOp
public void [[name]]() {

System.out.println("StrategyOp");
}
end_method: StrategyOp

[[methods]]
}
end_type: ConcreteStrategy

end_pattern: basic

A.15 Template Method

start_pattern: basic
start_type: Template
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

346

[[methods]]
start_method: Operation
public void [[name]]() {

[[callsAll.PrimitiveOp]]
}
end_method: Operation

}
end_type: Template
end_pattern: basic

A.16 Visitor

start_pattern: basic
start_type: ConcreteElement
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

start_method: Accept
public void [[name]]([[params]]) {

[[param.vis]].[[Visitor.Visit.name]](this);
}
end_method: Accept
[[methods]]

}
end_type: ConcreteElement

start_type: ConcreteVisitor
/**
[[ClassComment]]

*/
[[typedef]] {

[[fields]]

start_method: Visit
public void [[name]]([[params]]) {

[[param.elem]].[[ConcreteElement.Operation.name]]();
}
end_method: Visit
[[methods]]

}
end_type: ConcreteVisitor
end_pattern: basic

	Titlepage
	Copyright
	Dedication
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Research Design
	Overview of the Dissertation

	Chapter 2 — Background and Related Work
	Design Pattern Evolution
	Software Aging and Decay
	Technical Debt
	Software Quality
	Research Gaps
	Research Contributions

	Chapter 3 — The Arc Experimentation Framework
	Introduction
	Arc Architecture
	Workflows
	Integration of Tools
	Conclusion

	Chapter 4 — Collecting Design Pattern Data
	Introduction
	Design Pattern Detection
	Design Pattern Generation
	Conclusion

	Chapter 5 — Metrics, Quality and Technical Debt
	Introduction
	Metrics Analysis
	Quality Measurement
	Technical Debt Measurement
	Conclusion

	Chapter 6 — Software Injection
	Introduction
	Software Injection Architecture
	Design Pattern Grime Injection
	Applications
	Conclusion

	Chapter 7 — Design Pattern Grime Detection
	Introduction
	Detection Framework
	Arc Framework Integration
	Conclusion

	Chapter 8 — Putting It All Together: The Method
	Aspects to Study
	The Process
	Future Implications and Conclusions

	Chapter 9 — Design Pattern Grime Taxonomy
	Introduction
	Taxonomy Definition Process
	Formal Framework
	Modular Grime
	Class Grime
	Organizational Grime
	Conclusion

	Chapter 10 — Experimentation: The Effects of Grime on Maintainability and Technical Debt
	Introduction
	Methods
	Execution
	Analysis Results
	Interpretation
	Conclusion and Future Work

	Chapter 11 — Verification Study
	Introduction
	Design
	Selection
	Data Collection
	Analysis Procedure
	Results and Discussion
	Threats to Validity
	Conclusion

	Chapter 12 — Conclusions and Future Work
	Relationship to Existing Evidence
	Impact and Limitations
	Future Work

	References Cited
	APPENDIX: PGCL Definitions
	(Object) Adapter
	Bridge
	Chain of Responsibility
	Command
	Composite
	Decorator
	Factory Method
	Flyweight
	Observer
	Prototype
	Proxy
	Singleton
	State
	Strategy
	Template Method
	Visitor

