
Toward Technical Debt Aware Software Modeling

Gonzalo Rojas1, Clemente Izurieta2, Isaac Griffith2

1Department of Computer Science, University of Concepción, Concepción, Chile

gonzalorojas@inf.udec.cl
2Department of Computer Science, Montana State University, Bozeman, USA

{clemente.izurieta,isaac.griffith}@msu.montana.edu

Abstract. Over the last decade, the technical debt metaphor has gained in populari-

ty, and many tools exist today that can calculate the debt associated with a miscella-

ny of source code. However, no corpus of studies has investigated the effects that

creation and refactoring of conceptual models have on technical debt of correspond-

ing code. Our work addresses this fundamental gap by first providing a map of cor-

respondences between recognized model smells of UML Class Diagrams and Java

source code issues. We then describe a set of empirical studies to calculate the tech-

nical debt of generated source code as a result of refactorings performed on their

corresponding models. Our results reveal a significant disconnect between model

smells and technical debt values of resultant generated source code, and little effect

of model refactorings on reducing these values. However, once correspondences be-

tween model smells and code issues are defined, model refactoring proves helpful in

preventing technical debt from a high abstraction level. We exemplify this scenario

by providing an in-depth example, and conclude with a discussion of results.

Keywords: Technical Debt; model driven development; software quality; software

maintenance; model smells and refactoring.

1 Introduction

Technical debt accumulates over time in the form of source code that is difficult to work

with and can surface as a variety of disharmonies. This concept has been the subject of

numerous studies over the last few years. To date, most of the research has concentrated

on management approaches –most performed at code and implementation levels through

various static analysis tools. However, if practitioners are to adopt model driven tech-

niques, then the management of technical debt also requires that we address this problem

during the specification and architectural phases. According to [1], most technical debt is

not incurred during the implementation phase, but from poor architectural decisions made

during the design stages of software formation.

 2

In 1992, Ward Cunningham introduced the notion of technical debt [2], and although

the metaphor has been the subject of significant research, most of the literature is con-

cerned with the analysis of source code issues. In 2016, however, the definition of tech-

nical debt [3] also combined implementation and design as potential sources of debt. Fur-

ther, the research roadmap and vision for technical debt [4] promotes “support for up-

front and continuous architectural work (vs. emergent architecture) and evidence that it

helps avoid and manage technical debt”. Software systems accumulate technical debt

when short-term goals in software development are traded for long-term goals [5]. Many

code analysis tools and techniques have been proposed to identify source code-level debt

accumulated in a system [6][7][8].

As a result of the rise in popularity of this metaphor, we set about studying whether

there exists a correspondence between model refactoring and overall reduction of tech-

nical debt in the resulting source code. We seek to raise the abstraction level of technical

debt management, taking advantage of the claimed benefits of model-driven development

(less time-consuming and error-prone code generation, easier analysis in graphical mod-

els, and predictability). By considering the “model smell” concept as a high level coun-

terpart of code issues that incur technical debt, and model refactoring (originally explored

by Sunyé et al. [9]) as the high level equivalent of the code refactoring actions [10] to

reduce it, our final goal is to apply model refactorings that are technical debt aware.

There exist a number of factors that affect model quality [11][12]. The focus of this

work is on the quality of source code generated as a result of well-known model refactor-

ing changes made to fix model smells in UML class diagrams. Our overarching research

question can be stated as: What is the influence of Model Smells found in UML class dia-

grams on the technical debt of generated source code?

To investigate, we have broken this question down into the following sub-questions:

RQ1: Which model smells have corresponding source code issues?

RQ2: How do model refactorings influence the technical debt of generated source code?

RQ3: Are there any code generation aspects that affect technical debt in the resulting

source code?

To answer RQ1, we compared the definitions of well-known model smells of UML

class diagrams with specifications of Java code issues, thus portraying an initial scenario

where few rigorous correspondences between both groups were found. To address RQ2

and RQ3, we carried out an empirical study to analyze the effects that model refactoring

on UML class diagrams have on resultant technical debt of automatically generated Java

code. The study was oriented toward both removing model smells and removing code

issues; while another experiment analyzed a specific model smell with a strong corre-

spondence to a code issue, evaluating the impact of three model refactoring alternatives

on technical debt. In both cases, influence of model transformation was assessed.

We choose UML class diagrams because they are a de-facto standard used to model

structural aspects of systems, and Java because of its widespread use and simple syntax.

 3

To measure the quality of class diagrams, we used 27 model smells natively supported by

the EMF Refactor tool [13], while the quality of the generated source code was based on

the technical debt measured by SonarQube [7].

This paper is organized as follows: in Section 2 we provide background on model driv-

en engineering and attempts to link it to technical debt measurements. Section 3 describes

our research design, and in Section 4 we present our results in three separate sub-sections

(i.e., comparative study results, experimentation, and in-depth example). In Section 5 we

discuss our results. We discuss the threats to the validity of the study in Section 6, and

conclude with further remarks on future work and relevant new problems.

2 Background

Code smells [10] represent warnings that something may be wrong with source code.

Model smells represent disharmonies at higher abstraction levels that occur in the context

of a model driven process. Both are interconnected, and the concept of model smell sug-

gests a corresponding disharmony in source code –the major source of technical debt. As

stated in [14], “model smells can be defined as elements within the model that are poten-

tial candidates for improvements, being either symptoms of design defects [15] or bad

alternatives to recurring design problems in OO design also known as anti-patterns” [16].

There have been previous attempts to measure the quality of models in the context of

technical debt. The work performed by Giraldo et al. [19] used Moody’s rule definitions

[20] to characterize technical debt at the model level. Work by Izurieta and Bieman [21]

compare realizations of design patterns to pattern metamodels written in RBML [22] used

to characterize the abstractions of design patterns. Unfortunately, there is a dearth of

available research when investigating the generation and quality of source code produced

from models. In previous work presented by the authors [23] we identified the need to

perform empirical experiments on models to understand how model driven disharmonies

may affect code generated from said models.

According to Mens et al. [24], model refactoring “is a specific kind of model transfor-

mation that allows us to improve the structure of the model while preserving its quality

characteristics,” however, these quality characteristics may be at odds with source code

quality when source code is analyzed for its technical debt. Krogtie et al.’s framework

[25][26] measures physical, empirical, syntactic, semantic, and pragmatic quality, but

does not measure the quality of models according to code generation capabilities that are

technical debt aware, and missing from Mens et al. suggestions [24] to improve model

quality is the relationship that may exist between model refactorings and the correspond-

ing quality of the source code.

 4

3 Research Design

Our research design consisted of three major steps; which analyze the correspondences

between model smells detected in UML class diagrams and code issues of their automati-

cally generated Java code. We consider the concept of code issue as a direct indicator of

technical debt, by adopting a code analysis tool (described in Section 3.2) that assigns a

precalculated amount of technical debt to each occurrence of a code issue. The steps are:

i. To systematically identify possible correspondences between model smells and code

issue descriptions.

ii. To analyze a case study of a UML class diagram with several occurrences of model

smells, measuring the Technical Debt of successive versions of generated code after

performing model refactorings on each version.

iii. To analyze a case study with a specific model smell, to confirm and validate the corre-

spondences made in step i with the same model refactoring strategy of step ii.

Step i aims at diagnosing the actual implementation of model smells in code analysis

rules, under the assumption that structures were subject to similar smells at different ab-

straction levels, apart from the differences in the goals of models and source code. This

diagnosis helped depict a baseline scenario for further analysis. We carried out the sys-

tematic review of descriptions of 27 model smells [13] and 240 code issues [7].

Once the correspondences between model smells and source code issues were made,

step ii was aimed at complementing the static picture obtained from step i, by incorporat-

ing the analysis of the effect of model refactorings on technical debt associated with the

detected code issues. For this, two alternative strategies for model refactoring were ap-

plied: in the first one, we chose those model refactorings that directly helped remove de-

tected model smells; in the second one, we modified the model by refactoring the possible

source of detected code issues. For both alternatives, we iteratively applied one model

refactoring, measured the model smells of the new model version, generated the corre-

sponding code automatically, and measured its code issues and technical debt.

Finally, and in order to gain more precise insights into the effects of model refactoring

on technical debt, in step iii we isolated one model smell with a strong correspondence to

a code issue (detected in step i), and applied the model refactoring strategy of step ii that

removes model smell occurrences.

We used the EMF (Eclipse Modeling Framework) Refactor tool [13] to measure the

model smells of UML class diagrams, while code issues and technical debt of the generat-

ed code were measured with SonarQube [7]. The SonarQube operationalization of the

SQALE quality model [27] calculates technical debt by focusing on the maintainability

aspect of quality; where the technical debt ratio is the remediation cost divided by the

development cost, and the development costs are measured in days by multiplying the

LOC by the (parameterizable) cost per line. This choice is highly justified by its wide-

 5

spread use in code analysis, but no dominant alternative exists in the implementation of

model smells. As an exception, the SDMetrics tool [28] supports the calculation of model

metrics and the checking of design rules, but its proprietary specification of models is

hard to integrate with UML editors with code generation capabilities. EMF Refactor is

distributed as a plugin of Eclipse IDE, and thus can be easily integrated with modeling

and code generation facilities provided by EMF.

4 Results

4.1 Comparative Analysis

We analyzed model smell descriptions provided by EMF Refactor and code issues from

the SonarWay profile of SonarQube for the Java language. According to this analysis, we

identified three distinct groups of model smells: (a) model smells with a strong corre-

spondence to a source code issue, (b) those with a weak or indirect correspondence to a

source code issue, and (c) those with no corresponding or associated source code issue.

Table 1 shows the results of this analysis: from the 27 model smells natively provided by

EMF Refactor, 3 were classified into group (a), 2 into (b), and most (i.e., 22) into (c).

Table 1. Classification of EMF Refactor model smells by their corresponding SonarQube issues

G
r
o

u
p

 (
a

)

Model Smell Code Issue

Attribute name overridden Child class members should not shadow parent class members

Long parameter list Methods should not have too many parameters

Unnamed package The default unnamed package should not be used

G
ro

u
p

 (
b

)

Model Smell Code Issue

Large class Classes should not have too many methods

Unused class Classes should not be empty

G
ro

u
p

 (
c
)

Model Smells with no code issue in SQube Model Smells without information at code level

Data clumps (attributes)

Data clumps (parameters)

Primitive obsession (constants)

Primitive obsession (primitive types)

Speculative generality (abstract class)

Speculative generality (interface)

Abstract package

Diamond inheritance

Equal attributes in sibling classes

No specification

Specialization aggregation

Unused enumeration

Unused interface

Model Smells not considered as a code issue Model Smells as indicators of an incomplete model

Concrete superclass

Equally named class

Empty package

Unnamed attribute

Unnamed class

Unnamed data type

Unnamed interface

Unnamed operation

Unnamed parameter

 6

4.2 Technical Debt Measurement Experimentation

In order to assess the effects of model smell and source code refactorings on technical

debt, we selected an example design of a model that could seize enough major disharmo-

nies in its first version, so as to allow for successive refactorings in subsequent designs.

We chose an example (see Figure 1) obtained from EMF Refactor’s documentation.

Fig. 1. Model diagram of example used for formal experimentation [29].

Tables 2 and 3 show the measures of the number of occurrences of model smells and

code issues (and associated technical debt, in minutes) for this example, obtained by ap-

plying model refactoring either to remove detected model smells (Table 2), or to remove

code issues (Table 3). The upper section of both tables consists of 9 model smells detected

in the diagram, while the lower consists of 6 code issues of its corresponding Java code.

4.2.1 Model Smell Aware Refactoring.

Table 2 shows the results of refactoring model smells. From the original version of the

class diagram (v1) to v4, we applied the Pull up attribute refactoring to remove the 9 oc-

currences of Equal attributes in sibling classes model smell (regNo, power, and manufac-

turer). Removal of redundant attributes also helped reduce Data clumps and Primitive

obsession smells. For the same reason, generated code decreased in Class attributes

should not be public issues, but the total number of code issues remain almost unchanged.

 7

Table 2. Model refactoring based on model smell removal

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

M
o
d
el

 S
m

el
ls

Equal attributes in sibling classes 9 6 3 0 0 0 0 0 0 0 0

Large classes 8 8 7 6 6 6 6 6 6 6 6

Primitive obsession (data types) 5 5 2 3 2 1 0 0 0 0 0

Data clumps (attributes) 3 3 0 0 0 0 0 0 0 0 0

Diamond inheritance 1 1 1 1 1 1 1 1 1 1 1

Speculative generality class 1 1 1 1 1 1 1 0 0 0 0

Speculative generality interface 1 1 1 1 1 1 1 1 0 0 0

Unused class 1 1 1 1 1 1 1 1 1 0 0

Unused interface 1 1 1 1 1 1 1 1 1 1 0

C
o

d
e

Is
su

es

Class attributes should not be

public

34

(340)

32

(320)

30

(300)

28

(280)

29

(290)

30

(300)

31

(310)

31

(310)

31

(310)

31

(310)

31

(310)

Naming convention for packages
18

(360)

18

(360)

18

(360)

18

(360)

19

(380)

20

(400)

21

(420)

20

(400)

19

(380)

18

(360)

17

(340)

Use "@Override" annotations
3

(15)

3

(15)

3

(15)

3

(15)

3

(15)

3

(15)

3

(15)

3

(15)

0

(0)

0

(0)

0

(0)

Classes should not be empty
1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

0

(0)

0

(0)

Tab chars should not be used
13

(26)

14

(28)

14

(28)

14

(28)

15

(30)

16

(32)

17

(34)

16

(32)

15

(30)

15

(30)

15

(30)

TODO tags should be handled
6

(120)

6

(120)

6

(120)

6

(120)

6

(120)

6

(120)

6

(120)

6

(120)

4

(80)

4

(80)

4

(80)

Total
75

(866)

74

(848)

72

(828)

70

(808)

73

(840)

76

(872)

79

(904)

79

(882)

70

(805)

68

(780)

67

(760)

From v4 to v7, we applied the Replace data value with object refactoring to remove the

remaining Primitive obsession smells, splitting affected classes. This refactoring increased

the technical debt, by augmenting the package naming convention and tabulation charac-

ters code issues. The same effect occurred with the Remove superclass refactoring of the

only Speculative generality class smell (Service class in Fig. 1), applied from v7 to v8.

From v8 to v9, the application of Remove interface to delete the only Speculative gen-

erality interface smell (IRentable interface in Fig.1) also removed the three occurrences of

the Use @Override annotations smell, from the methods inherited by the three subclasses

of Vehicle. However, the diagram lost the specification of a method. Finally, from v9 to

v11, Remove Unused Class and Remove Unused Interface refactorings were applied to

remove model smells caused by empty structures that were included in the model, but not

in the diagram. This is conventional in model editors, and can introduce technical debt

when hidden structures are not detected. In the case of Unused Class, the hidden class was

empty, so the refactoring also removed the empty class issue. The remaining 7 smells

(post v11) were not refactored because their removal caused new model smells to arise.

This experiment reinforces the lack of correspondence between model smells and code

issues reported in the previous analysis. The effects of model refactorings on technical

debt were mainly associated with the number of attributes and java files generated, but

with no correspondence with the goals of the applied model refactoring.

 8

4.2.2 Code Issue Aware Refactoring.

Table 3 shows the results of model refactoring applied to remove detected code issues.

Refactoring options were chosen by identifying modeling decisions that likely caused

these issues. In this way and differently from the previous case, model refactoring was not

oriented towards removing detected model smells. Three model refactorings were applied,

from v1 to v4, with a decrease of 53 code issues and 705 mins of technical debt. From v4,

remaining code issues could not be removed from the class diagram, and code refactor-

ings were performed, decreasing the technical debt by 41 mins. In the entire process, only

one model smell was removed.

Table 3. Model refactoring based on code issue removal

 v1 v2 v3 v4 v5 v6

M
o

d
el

 S
m

el
ls

Equal attributes in sibling classes 9 9 9 9 9 9

Large classes 8 8 8 8 8 8

Primitive obsession (data types) 5 5 5 5 5 5

Data clumps (attributes) 3 3 3 3 3 3

Diamond inheritance 1 1 1 1 1 1

Speculative generality class 1 1 1 1 1 1

Speculative generality interface 1 1 1 1 1 1

Unused class 1 1 1 0 0 0

Unused interface 1 1 1 1 1 1

C
o

d
e

Is
su

es

Class attributes should not be public 34 (340) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Naming convention for packages 18 (360) 18 (360) 0 (0) 0 (0) 0 (0) 0 (0)

Use "@Override" annotations 3 (15) 3 (15) 3 (15) 3 (15) 0 (0) 0 (0)

Classes should not be empty 1 (5) 1 (5) 1 (5) 0 (0) 0 (0) 0 (0)

Tabulation chars should not be used 13 (26) 13 (26) 13 (26) 13 (26) 13 (26) 0 (0)

TODO tags should be handled 6 (120) 6 (120) 6 (120) 6 (120) 6 (120) 6 (120)

Total 75 (866) 41 (526) 23 (166) 22 (161) 19 (146) 6 (120)

From v1 to v2, visibility of all public attributes was switched from public to private,

removing the most numerous code smell detected. In this way, the generation of v2 great-

ly diminishes the technical debt (by 340 mins). From v2 to v3, a simple renaming of the

package name (from DomainModel to domainmodel) of the diagram was enough to re-

move 18 code issues and 360 mins of technical debt. From v3 to v4, a previously unde-

tected empty class was deleted from the diagram, removing the Unused Class smell from

the diagram and 5 mins of technical debt associated with it (i.e. 1 issue).

Adding missing @Override annotations and replacing tabulation characters with

whitespaces were the code refactorings applied to corresponding issues. Even when 41

mins of technical debt were reported as paid by SonarQube, it took significantly less time

to perform these actions. We chose not to refactor TODO tags issues, because the tags

provide an aid to the developer, thus we do not consider them as technical debt.

 9

4.3 Causal Analysis Experiment

In order to validate the strong match classification between source code issues and model

smells, and to better understand the relationship between model refactorings and technical

debt measurements in source code, we performed an in-depth causal analysis of these

smells. For each model smell in Group (a) of Table 1, a sample Class Diagram was creat-

ed, aiming to obtain several occurrences of that smell only. As an example, we discuss the

results of the experiment applied to the Attribute Name Overridden model smell associat-

ed to the code rule “child class members should not shadow parent class members”.

Fig. 2. Initial diagram for Attribute name overridden study

Figure 2 shows the initial version of the tested UML class diagram, which contains 12

occurrences of the Attribute Name Overridden smell (name and distance attributes of

subclasses). To address their removal, three different options of model refactoring were

iteratively applied: i) Remove attribute, in which overriding attributes were removed from

subclasses one by one; ii) Pull up attribute, where overriding attributes were pulled up to

the superclass; and iii) Push down attribute, where overridden attributes were pushed

down from the superclass to its subclasses.

Fig. 3. Option i): Remove attribute Option ii) Pullup attribute Option iii) Pushdown attribute

 10

The application of Remove attribute was predictably the option that took most itera-

tions. Figure 3 Option i) shows version 8 of the refactored diagram, when 7 attributes

from subclasses were already removed, one for each version. Option ii) shows the final

version of the diagram, with two Pull up attribute refactorings performed, and Option iii)

shows the final version for the application of two Push down attribute refactorings.

Table 4. Results of Remove attribute refactoring for Attribute Name Overridden model smell

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

ms1 12 11 10 9 8 7 6 5 4 3 2 1 0

ms2 12 6 0 0 0 0 0 0 0 0 0 0 0

ci1 12 (60) 11 (55) 10 (50) 9 (45) 8 (40) 7 (35) 6 (30) 5 (25) 4 (20) 3 (15) 2 (10) 1 (5) 0 (0)

ci2 24(120) 22(110) 20(100) 18 (90) 16 (80) 14 (70) 12 (60) 10 (50) 8 (40) 6 (30) 4 (20) 2 (10) 0 (0)

ci3 7 (14) 7 (14) 6 (12) 6 (12) 5 (10) 5 (10) 4 (8) 4 (8) 3 (6) 3 (6) 2 (4) 2 (4) 1 (2)

Total 43(194) 40(179) 36(162) 33(147) 29(130) 26(115) 22 (98) 19 (83) 15 (66) 12 (51) 8 (34) 5 (19) 1 (2)

Table 4 shows the progression of occurrences of model smells and code issues for the

corresponding code, with the technical debt amount associated in minutes. Model smells

ms1 and ms2 correspond to Attribute Name Overridden and Equal Attributes in Sibling

Classes, respectively. Code issue ci1 corresponds to the rule “Child class members should

not shadow parent class members,” whose correspondence with ms1 we studied, while ci2

and ci3 correspond to the rules related to @Override annotation and Tabulation charac-

ters, respectively. In order to provide an example with several occurrences of ms1, the

diagram also incurred several occurrences of ms2. The second column (i.e., v1) shows the

values of the initial version. This example shows the exact correspondence between oc-

currences of the ms1 model smell and the ci1 code issue (bold values in Table 4).

Table 5. Results of Pullup attribute (left) and Push down attribute (right) refactoring for Attribute

Name Overridden model smell

 Pull up attribute Push down attribute

 v1 v2 v3 v1 v2 v3

ms1 12 6 0 12 6 0

ms2 12 6 0 12 12 12

ci1 12 (60) 6 (30) 0 (0) 12 (60) 6 (30) 0 (0)

ci2 24 (120) 12 (60) 0 (0) 24 (120) 12 (60) 0 (0)

ci3 7 (14) 7 (14) 1 (2) 7 (14) 7 (14) 7 (14)

Total 43 (194) 25 (104) 1 (2) 43 (194) 25 (104) 7 (14)

Table 5 shows the values for both refactorings, respectively. In both cases, removing

the occurrences of ms1 only took two refactorings, corresponding to the attributes being

pulled up or pushed down, respectively. In all three cases, the correspondence between the

 11

Attribute Name Overridden model smell and the code issue associated to the rule “Child

class members should not shadow parent class members” has been confirmed.

Evaluated model refactorings differ in the number of actions required to completely

remove the measured technical debt, and the final state of the refactored model. In the first

two cases, the final diagram shows all model smells were removed, and its code reflected

a low technical debt principal; while in the third case, occurrences of ms2 remained unal-

tered, with a technical debt amount significantly higher. Consequently, from these three

alternatives of model refactoring for the Attribute Name Overridden smell, Pull up attrib-

ute allows reducing the highest amount of technical debt principal in less iterations, thus

being the best technical debt aware model refactoring option.

5 Discussion

We set out to answer three research questions:

RQ1: Which model smells have corresponding source code issues?

We carried out a comparative analysis study (c.f. 4.1) and found that most model

smells have no corresponding code issues in SonarQube. The lack of correspondences can

be explained by different reasons: i) the Sonar Way profile does not implement the rule

because their implementation is independent of model smell definitions, ii) there exists no

code issues associated with the model smell, iii) the model smell is orthogonal to good or

correct implementation practices, and iv) the model smell is incorrectly stated.

RQ2: How do model smell refactorings influence the technical debt and quality of gen-

erated code?

To answer this question we refer to Table 3 focused on model refactorings aimed at

eliminating model smells, and Table 4 focused on model refactorings aimed at eliminating

code issues. From Table 3, we can observe that as model smells are progressively elimi-

nated, technical debt principal does not vary greatly, and in some cases we observe a

slight growth. The results shown in Table 4 can be thought of as an exercise in reverse

engineering where we tried to detect which modeling decision was responsible for the

code issue detected. Once the corresponding model refactoring was applied we observed

(as expected) a reduction in technical debt; however there were no changes in model smell

counts. This clearly points to a need for improving the correspondence between model

smells and code issues in order to support software modeling technical debt awareness.

Using an example, we showed the correspondence between model smells and code is-

sues that have a one-to-one relationship, which allows estimating the technical debt and

performing the necessary refactoring at a high abstraction level. In this way, estimation

and prevention of technical debt can be performed before code is generated.

 12

Further, we should reiterate that model smells can be removed using different model

refactoring alternatives, and although all effective, some may progress quicker than oth-

ers. For example, the same model (c.f. Figure 3) can be refactored using two Pullup, two

Pushdown, or multiple Remove Attribute refactorings, however; from a technical debt

point of view, some strategies are better than others. For example, Pullup and Remove

Attribute perform better than Pushdown. This underlines that technical debt awareness is a

new criterion of model refactoring that must be considered when removing model smells,

and that it should be taken into consideration when developing new tools that alert soft-

ware developers of possible alternatives and the effects they have on technical debt.

RQ3: Are there any code generation aspects that affect technical debt in the resulting

source code?

In both experiments, we detected some code issues associated to the executed model-

to-text transformation rules, implemented by Papyrus’ Java Code Generator plugin [30].

This tool uses tab characters instead of whitespaces, which is considered a code issue by

Sonarqube, and the technical debt associated increased as the number of generated files

grew. The addition of TODO tags in incompletely defined classes is also a feature imple-

mented in model transformation rules that generate technical debt, but which greatly help

developers. In this sense, the generation of @Override annotations could also be helpful,

but the used tool does not include it. In summary, a technical debt-aware model transfor-

mation should implement code generation rules that consider not only the semantic corre-

spondences between modelling and implementation artifacts, but also the code issues that

can be introduced in the transformation.

6 Threats To Validity

We used Wohlin et al. [31] definitions of threats. To mitigate for internal threats such as

unintended relationships between experiment code issues and model smell treatments with

the outcome, we made sure that we did not have factors that we had no control over or had

not been measured. We controlled the treatments of model refactorings (code and model)

by applying them one at a time and carefully measuring the dependent variable (i.e. tech-

nical debt principal). We also performed a comparative study against well-known model

smells to help with causal analysis. In order to lessen the construct validity of our study,

we compared the model smells from EMF Refactor to some well-known smells from the

current literature and found that there is variation in definitions and the strength of the

correspondence to the source code issue. We documented such relationships. We also

carefully choose a model example that had known model smells so we could observe their

impacts on technical debt. External validity is threatened by the usage of a single set of

rules (i.e., The Sonar Way profile) and their default values, although we are highly sus-

pect that results would be no different under other code issue measuring techniques.

 13

7 Conclusion

We set out to understand how model smell refactorings influence the technical debt of

source code generated from models. Results showed that a significant gap exists. We sus-

pect that this is due to three reasons. First, model smells do not have source code counter-

parts implemented as rules in existing tools, second, the idea of technical debt measure-

ments performed at the modeling level is still relatively new, and third, model smell refac-

toring and source code issue refactoring are intended to achieve different quality goals.

Development of new rules at the source code level, and the development of more ma-

ture tools will address the first two points. To make progress in the third reason, we must

tackle the well-known problem of synchronization between models and generated source

code. To exemplify this problem, consider the evolution [32] of a UML class diagram

whose quality is measured subject to usability characteristics, whereas the quality of the

corresponding source code is measured subject to the maintainability of the latter. Both

objective functions are orthogonal, thus synchronization can only progress so far until

repeated amendments to the model or the source code are required as a result of changes

to its counterpart. Model refactorings that improve usability may cause changes that nega-

tively impact source code maintainability, and vice versa. We posit that refactorings per-

formed during modeling can be technical debt aware, and that synchronization can be-

come more manageable because the objective function is shared.

References

1. Ozkaya, I.: Agility and Software Architecture: Why Successful Teams Should Master Both.

Software Engineering Institute, CMU. Presentation at MSU, Bozeman MT (2016)

2. Cunningham, W.: The WyCash portfolio management system. In: OOPSLA '92, pp. 29-30.

ACM, New York, NY, USA, (1992)

3. Schloss Dagstuhl: Managing Technical Debt in Software Engineering, Dagstuhl Reports, Vol.

6, Issue 4, April 17-22 (2016). http://www.dagstuhl.de/16162

4. Izurieta, C., Ozkaya, I., Seaman, C., Kruchten, P., Nord, R., Snipes, W., Avgeriou, P.: Perspec-

tives on Managing Technical Debt. A Transition Point and Roadmap from Dagstuhl. In: 1st Int.

Workshop on Technical Debt Analytics (TDA), December 6-9, Hamilton, New Zealand (2016)

5. Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F.: Comparing

Four Aproaches for Technical Debt Identification. Software Quality J. 2,3, 403-426 (2014)

6. Findbugs (2016) http://findbugs.sourceforge.net/ Accessed 2016

7. SonarSource (2016) http://www.sonarsource.com Accessed 2016

8. Strasser, S., Frederickson, C., Fenger, K., Izurieta, C.: An automated software tool for validat-

ing design patterns. In: CAINE ’11, Honolulu, HI, USA (2011)

9. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.M.: Refactoring UML models. In: UML 2001.

LNCS, vol. 2185, pp. 134-138. Springer, Heidelberg (2001)

10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)

http://www.dagstuhl.de/16162
http://findbugs.sourceforge.net/
http://www.sonarsource.com/

 14

11. Mohagheghi, P., Aagedal J.: Evaluating Quality in Model-Driven Engineering. In: MISE '07.

IEEE Computer Society, Washington, DC, USA (2007)

12. Jalbani, A., Grabowski, J., Neukirchen, H., Zeiss, B.: Towards an integrated quality assessment

and improvement approach for UML models. In: SDL 2009, pp. 63-81 (2009)

13. Arendt, T., Taentzer, G.: UML model smells and model refactorings in early software devel-

opment phases. Tech. Rep., Philipps Universitat Marburg, Germany (2010)

14. Misbhauddin, M., Alshayeb, M.: UML model refactoring: a systematic literature review. Em-

pirical Software Engineering. 20, 206-251 (2015)

15. Hasker, R.W., Rowe, M.: UMLint: Identifying defects in UML diagrams. In: 2011 Annual

Conf. of the American Society for Engineering Education, Vancouver, BC, Canada (2011)

16. Brown, W.J., Malveau, R.C., Brown, W.H., McCormick, H.W., Mowbray, T.J.: AntiPatterns:

refactoring software architectures and projects in crisis. John Wiley & Sons, Hoboken (1998)

17. Siau, K., Tian, Y.: The Complexity of Unified Modeling Language: A GOMS Analysis. In:

22nd International Conference on Information Systems, pp. 443-447 (2001)

18. Solheim, I., Neple, T.: Model Quality in the Context of Model-Driven Development. In:

MDEIS’06, pp. 27-35 (2006)

19. Giraldo, F., España, S., Pineda, M., Giraldo, W., Pastor, O.: Integrating Technical Debt into

MDE. In: CAISE ’14 Forum (2014).

20. Moody, D. L.: The physics of notations: Toward a scientifc basis for constructing visual nota-

tions in software engineering. IEEE Trans. Softw. Eng., 35(6), 756-779 (2009)

21. Izurieta, C., Bieman, J.: A multiple case study of design pattern decay, grime, and rot in evolv-

ing software systems. Software Quality Journal. 21, 1-35 (2013)

22. Kim, D.: A meta-modeling approach to specifying patterns. CSU PhD Dissertation (2004)

23. Izurieta, C., Rojas, G., Griffith, I.: Preemptive Management of Model Driven Technical Debt

for Improving Software Quality. In: QoSA '15, pp. 31-36 ACM, New York, NY (2015)

24. Mens, T., Taentzer, G., Mueller, D.: Model Driven Software Refactoring. In: Rech, J., Bunse,

C.(eds.) Model Driven Software Development: Integrating Quality Assurance. Inf. Science

Reference, Hershey, NY (2009)

25. Krogstie, J., Lindland, O.I., Sindre, G.: Defining Quality Aspects for Conceptual Models. In In-

formation Systems Concepts (ISCO3), pp. 216-231 (1995)

26. Krogstie, J.: Evaluating UML Using a Generic Quality Framework. In: UML and the Unified

Process, Idea Group Publishing, pp. 1-22 (2003)

27. Letouzey J. L., Coq, T.: The SQALE Analysis Model: An Analysis Model Compliant with the

Representation Condition for Assessing the Quality of Software Source Code. In: VALID 10,

pp. 43-48, IEEE (2010)

28. SDMetrics (2016) http://www.sdmetrics.com Accessed 2016

29. Arendt, T., Kehrer, T., Taentzer, G.: Understanding Complex Changes and Improving the

Quality of UML and Domain-Specific Models. In: MoDELS 2013. Miami, FL (2013)

30. Java Code Generation Plugin. https://wiki.eclipse.org/Java_Code_Generation Accessed 2017

31. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation

in software engineering. Springer Science & Business Media pp. 102–104 (2012)

32. Khalil, A., Dingel, J.: Supporting the Evolution of UML Models in Model Driven Software

Development: A Survey. Technical Report 2013-602 School of Computing, Queen’s University

Kingston, Ontario, Canada (2013)

http://www.sdmetrics.com/
https://wiki.eclipse.org/Java_Code_

