
An Approach Towards Merging Grammars
Isaac D. Griffith and Rosetta Roberts

Empirical Software Engineering Laboratory
Informatics and Computer Science

Idaho State University
Pocatello, Idaho, 83208

Email: {grifisaa@isu.edu, roberose@isu.edu}

Abstract—Introduction: Since the introduction of Island
Grammars, they have been successfully used for a variety
of tasks, including impact analysis, multi-lingual parsing, and
source code identification. However, there has been no attempt
to automate the generation of Island Grammars. Objective: This
research considers the development of a method to automate
the merging of Island Grammar components. The goal of this
is to facilitate the development of an approach to automate
the creation of Island Grammars. The result of this is the
reduction in initial effort and maintenance effort required for
Island Grammar engineering. Methods: We develop an auto-
mated approach to merge the components of grammars. To
evaluate this approach, we conducted two experiments, each
using a factorial design of five replications each. We randomly
selected pairs of grammars from each of three size categories
to assess the effects of the merging process on the maintenance
effort and complexity of the generated grammars. Results: We
found that in nearly all cases, the application of this merging
approach reduces the maintenance effort and complexity of the
grammars. Limitations: The primary limitation of this research
is that this approach is currently limited to grammars written
in the Antlr4 grammar format. Conclusions: This work presents
the initial steps towards the automated construction of Island
and Tolerant Grammars. We have shown that this approach to
merging grammar components follows suit with the expectations
of Island and Tolerant grammars (reduction in maintenance
effort and complexity).

Index Terms—Island Grammars, Automated Grammar For-
mation, Software Language Engineering

I. INTRODUCTION

Modern software development practice has led to an increas-
ing number of software systems created using multiple lan-
guages [1]. As an example, a modern web application typically
consists of five or more languages (e.g. SQL, Java, TypeScript,
HTML, CSS). Such multi-lingual codebases present a difficult
challenge to the development and maintenance of source code
analysis tools [1]. These tools typically address this challenge
using a combination of multiple parsers (one per supported
language). Constructing and integrating each parser for each
language can be both difficult and time-consuming, and thus
it is better to use existing parsers [2].

An alternate solution to this problem is Island Grammars,
which allow the creation of multi-lingual parsers [3]. These
parsers provide an elegant, more efficient solution than the ap-
plication of existing parsers. Currently, they require the manual
combination of selected components from source grammars
[3], a process that can be cumbersome to maintain as these

grammars evolve. To overcome this challenge, we develop a
crucial part of the automated construction of Island Grammars
through an approach to merging multiple grammars.

Underlying this approach is the following hypothesis: Auto-
mated grammar merging is an important and necessary step
in the evolution of Island Grammar research. It provides the
capability to address difficulties in the initial construction
and further maintenance of Island Grammars. To evaluate
this hypothesis we construct Goal-Question-Metric (GQM) [4]
hierarchy starting with the following research goal (RG):

RG Evaluate an automated approach for the purpose of au-
tomating the merging of grammar rules with respect to
the maintenance effort and complexity from the point
of view of software language engineers in the context
of the creation of Tolerant and Island Grammars.

This goal is further refined in Sec. IV.
This paper is organized as follows. Sec. II discusses the the-

oretical foundations and alternative approaches related to this
work. Sec. III details our approach to automate the merging
of grammars. Sec. IV details the design of experiments that
evaluate the proposed approach. Sec. V presents the results of
the experiments and their analysis and interpretation. Sec. VI
details the threats to the validity of this study. Finally, Sec. VII
concludes this paper with a summary and description of future
work.

II. BACKGROUND AND RELATED WORK

A context free grammar, G, can be described as G =
(V,Σ, P, S) [5]. Where, V is the set of non-terminal symbols,
Σ is the set of terminal symbols, P ⊆ V × (V ∪ Σ)∗ is
the set of productions describing how the symbols of V can
be substituted for other symbols, and S ∈ V is the starting
symbol. Each production is written as a→ b with a ∈ V and
b ∈ (V ∪ Σ)∗. When b is the empty string, the production is
denoted by a → ε. A string, s, is called a valid sentence for
a grammar if it can be created by repeated application of the
productions of that grammar [6]. L(G) denotes the set of all
valid sentences, or language, of grammar G.

Island Grammars are a specialized form of context free
grammar, which includes the addition of a set of interest
productions. These focus the grammar on the set of lan-
guage components of interest to the grammar developers. An
Island Grammar is formally defined as the following tuple
G′ = (V,Σ, P, S, I) [6]. Where I is the set of interests or



islands. The remaining components of a language reduce to
one or more catchall productions referred to as water [6],
thus having the effect of reducing the complexity of the
grammar. An Island Grammar, G′, derived from a grammar, G,
has a language L(G′) which satisfies the following property:
L(G′) ⊃ L(G).

These properties of Island Grammars offer several ad-
vantages. These advantages include faster development time,
lower complexity, and better error tolerance necessary for
several applications, including: documentation extraction and
processing [7], impact analysis [8], and extracting code em-
bedded in natural language documents [9], [10]. Of particular
interest to our research is their use for creating multilingual
parsers [3], which inspired this research, and research into the
development of Tolerant Grammars [11]–[13].

III. APPROACH

The following describes the approach for merging similar
productions of a grammar. Initially, this approach assumes that
the grammar has been normalized such that each production
in the grammar is one of the following two forms:

Form1: A production composed of a rule containing at
least one symbol, and where all symbols are
concatenated with one another. An example is:
〈A〉 ::= 〈B〉 ‘a’ . . ..

Form2: A production composed of an alternation of
one or more symbols. An example is: 〈B〉 ::=
〈A〉 | ‘b’ | . . . | ε.

Algorithm 1 embodies this approach. The algorithm initially
separates productions of the normalized grammar, N , based
on production form into two disjoint sets (line 2). Within each
set, pairs form to compare production similarity (line 3). The
algorithm compares pair similarity to a known threshold value,
t. If the similarity is less than t, then the pair is disregarded.
Otherwise, the algorithm offers it to a priority queue (sorted
on similarity). The following describes the pair similarity
calculation defining the “Measure” function.

For each pair of productions, we measure a form-dependent
similarity score. For Form1 production, equation (1) measures
similarity as the ratio of the cardinality of aligned production
symbols to the total size of the productions. For Form2

productions, equation (2) measures similarity as the ratio of
the cardinality of the intersection of production symbols to the
total size of productions and accounts for common symbols.

S1 =
2|LCS(A,B)|
|A|+ |B|

(1)

S2 =
2|A ∩B|
|A|+ |B|

(2)

In (1) the function “LCS” aligns rules using a dynamic
programming solution to the longest common subsequence
problem [14]. This function then returns the length of the
longest common subsequence. Finally, the algorithm doubles
this value to account for the size across both productions.

Algorithm 1 Merge Algorithm
1: procedure MERGEPRODUCTIONS(N , t)
2: f1 ← collect(‘form1’,N ); f2 ← collect(‘form2’,N )
3: p1 ← PAIRS(f1); p2 ← PAIRS(f2)
4: Q1 ← MEASURE(p1, t, S1)
5: Q2 ← MEASURE(p2, t, S2)
6: PROCESS(Q1, f1, S1); PROCESS(Q2, f2, S2)
7: function PROCESS(Q, data, func)
8: while Q 6= ∅ do
9: p← POLL(Q)

10: V ← MERGE(p.pair)
11: Q ← UPDATE(Q,V, p, data, func)
12: function MERGE(pair)
13: rule← ∅
14: if pair is of form1 then
15: list← ALIGNPAIR(pair)
16: for all p ∈ list do
17: if p.left = p.right then
18: rule← rule · p.left
19: else
20: rule← rule · (p.left|p.right)
21: else
22: v ← ∅
23: v ← pair.right.symbols ∪ pair.left.symbols
24: rule← concat(v)

25: V ← NORMALIZE(rule)
26: return V

Once the “Measure” function returns the priority queue
containing the pairs of productions to merge (lines 4 and
5), the algorithm process each queue. This process polls the
most similar pair from the queue to merge and form a new
set of normalized productions (lines 7–11). These normal-
ized productions update the queue based on the appropriate
similarity scoring function. This process continues until the
priority queue is empty. The following describes the “Merge”
and “Update” functions.

This “Merge” function defines a form-dependent process
used to merge a production pair. Form2 pairs, the simplest
case, merge by forming a new production containing an alter-
nation composed of the union of the two productions’ symbols
(lines 21–24). Form1 pairs merge using a process similar
to Form1 similarity scoring (lines 14–15). The “alignPair”
function aligns the symbols from each production using the
LCS function from (1), reusing the original table created
during measurement. This produces an optimal alignment, but
in cases with multiple optimal alignments one is arbitrarily
selected.

Once aligned, the algorithm forms a new production forms
with an empty rule. The rule forms by concatenating aligned
pairs (lines 16–20). In the case that symbols differ, the
differing portions in each list are concatenated together, and
the contents from each list are joined to form an alternation.
Otherwise, it uses the symbol from only one list. Once



merged, the new production is normalized (which may produce
multiple new productions in the case of Form1 productions),
and the normalized results returned.

Once a pair of productions have been merged and normal-
ized, the priority queue and grammar must be updated (line
11). The update process works as follows — initially, the data
set of merged productions updates by removing the merged
pair. Next, the priority queue updates by removing all pairs
in the queue containing either of the merged productions —
next, the grammar updates to replace all uses of the merged
productions with the newly merged production. Finally, the
merged production pairs with other productions of the same
form, and the similarity between pairs is measured. Each pair,
with similarity above the threshold, are added to the priority
queue.

The outcome of this algorithm is a normalized grammar
composed of the input grammars, where those productions
with a similarity of at least t combine into single productions.
Where the resulting language, LG′ , of the merged and nor-
malized grammar, G′ has the following property: LG′ ⊇ LG.
Where LG is a language of input grammar G, and this property
holds across all input grammars.

IV. EXPERIMENTAL DESIGN

This section describes the overall experimental design used
to evaluate the grammar merging approach presented in this
paper. Initially, we refine the research goal, defined in Sec. I,
into a set of actionable research questions (RQ) and metrics
(M), according to the GQM process, as follows:

RQ1 What effect does merging grammars have on main-
tenance effort?

RQ2 What effect does merging grammars have on com-
plexity?

M1 ∆HAL – the change in Halstead Effort measured, us-
ing the Halstead Effort measure for grammars defined
by Power and Malloy [15], after the normalization
phase and after the final merge phase.

M2 ∆MCC – the change in complexity measured, us-
ing the McCabe Cyclomatic Complexity metric for
grammars defined by Power and Malloy [15], after
normalization phase and after the final merge phase.

This decomposition leads to the identification of the exper-
iments’ dependent and independent variables. The dependent
variables are ∆HAL and ∆MCC. The independent variables
are:
• Similarity Threshold – the parameter that guides the

similarity measurements used in the merging process. The
values used in the experiments are 0.001 (control), 0.25,
0.5, 0.75, and 1.0.

• Size – the category of the grammar as defined by a statis-
tically thresholded measure of the number of productions
(PROD) [15]. Possible values are Small, Medium, and
Large.

To evaluate the approach, we conduct two experiments.
The first evaluates the effect of merging on the maintenance

Fig. 1. Experimental unit selection process.

effort required for a merged grammar as compared to its
combined source grammars. The second evaluates the effect
merging has on the complexity of the merged grammar as
compared to its combined source grammars. Both experiments
use a Factorial Design, with a single dependent variable
(∆HAL and ∆MCC, respectively), a single treatment factor
SimilarityThreshold and the grouping factor Size.

The experimental units are pairs of grammars selected from
the Antlr4 [16] grammar repository1. At the time of this writ-
ing, the repository contained 198 individual grammars from
a variety of general-purpose and domain-specific languages.
Grammar pair selection, for each experiment, is depicted in
Fig. IV and works as follows. Initially, for each grammar
in the repository, we collected a combination of metadata
and metric measurements. The metadata collected consists of
the language represented by the grammar, the version of that
language (if applicable) and the following metrics (selected
from the metrics suite by Power and Malloy [15]): TERM –
the number of terminals, VAR – the number of defined non-
terminals, PROD – the number of productions, and MCC –
McCabe’s Cyclomatic Complexity.

The resulting metrics measures subdivided the grammar
dataset into three categories (Small, Medium, and Large)
based on the logarithm of PROD (as the values are log-
normal distributed), using statistically constructed thresholds
[17]. Category threshold values are defined as: Small-Medium:
20.1084 productions and Medium-High: 238.4995 produc-
tions. These categories form the groups from which we select
experimental units.

The experiments use a 3×5 factorial design and require 15
grammar pairs (5 per size category) per replication. A repli-
cation analysis identified a need for 5 replications, therefore a
total of 25 grammar pairs per experiment. Thus, we selected
(without replication) 12 grammars, yielding

(
12
2

)
= 66 com-

binations of which we randomly select 5 pairs per replication
per experiment. Tab. I shows the selected grammars.

The metadata and selected grammars combine into an exper-
iment control file (one per replication). This file, containing
a randomized set of triples (a grammar pair, the similarity
threshold value, and size category), directs the experimental
execution system and ensures process validity.

The experimental execution system executes the data col-
lection process across each experimental unit, as depicted in
Fig. IV, as follows. Initially, the system reads in the control

1https://github.com/antlr/grammars-v4



TABLE I
GRAMMARS RANDOMLY SELECTED FROM EACH SIZE CATEGORY USED IN

THE EXPERIMENTS.

Category Grammars

S brainfuck, cmake, csv, inf, lcc, pdn, tsv, url
quakemap, sexpression, properties, useragent

M
cto, dart2, flatbuffers, fusion-tables, lua
pascal, python2, romannumerals, stacktrace
webidl, sgf, z-ops

L cql3, edif300, fortran77, idl, informix, java9
kotlin, rexx, sharc, swift2, objc-two-step
powerbuilder

Fig. 2. Data collection procedure.

file. For each file entry (experimental unit), the following
occurs. 1.) The selected similarity threshold value is applied.
2.) The grammars are located, read in, and trivially merged. 3.)
The combined grammar’s effort or complexity is measured and
recorded. 4.) The final merging process is applied, resulting
in the final grammar. 5.) The resulting grammar’s effort or
complexity is measured and recorded.

Once the data collection process completes, the system
exports the results to a data table. This cycle repeats for each
replication of each experiment. Finally, the results of each
replication combine into a single data table used in the analysis
phase.

As described in Sec. IV, both experiments utilize a Factorial
design [18]. Typically, a factorial design uses an ANOVA, but
due to significant violations of the ANOVA assumptions, we
instead use a permutation F-test [19]. The statistical model for
the permutation F-Test is as follows:

yijk = µ+ sti + sizej + (st ∗ size)ij + εijk

Where, yijk is the kth value of the observation (either ∆MCC
or ∆HAL) associated with the ith similarity threshold level
and jth size level, µ is the baseline mean, sti is the ith level
of similarity threshold effect, sizej is the jth level of size
effect, (st ∗ size)_ij is the interaction effect due to similarity
threshold and size, and εijk is the random error of the kth
observation from the (i, j)th cell. We test the following null
hypotheses using this model:

H1,0: The effects of interaction term levels are equal.
H2,0: The effects of similarity threshold levels are equal.

H3,0: The effects of size levels are equal.

For each of these tests, we have selected an α threshold of
0.95. In the case that we reject H1,0 (at an α level of 0.95),
we conduct a multiple-comparison procedure to compare the
individual effects of each level of the similarity threshold
factor. We have selected to use Steel’s [20] non-parametric
multiple comparison procedure. This procedure corrects for
multiple comparisons and compares each treatment against a
control (similarity threshold = 1.0). For this test, we will be
evaluating the following null hypothesis (at α threshold of
0.95):

H4,0: There is no difference between the median effects of
similarity threshold effects and control effect.

Additionally, we are interested if there is a strict order of the
effect on ∆HAL or ∆MCC for the levels of the similarity
threshold. To evaluate this, we have selected to utilize the
Jonhckheer’s trend test [21]. Jonhckheer’s trend test is a non-
parametric test to determine if there is an a priori ordering
within independent samples. The null hypothesis to be tested
is as follows:

H5,0: There is no difference in the median effects of the
similarity threshold levels.

The following section discusses the results of these experi-
ments and statistical tests.

V. RESULTS AND DISCUSSION

This section describes the results of the ∆HAL and
∆MCC experiments. Initially, we explored the dispersion of
both ∆HAL and ∆MCC across size and similarity threshold
values, a displayed in Fig. 3a and Fig. 3b, respectively. Both
graphs show very little variability in either ∆HAL or ∆MCC
when the size is small. Of note, is the apparent decreasing
trend across size and within the size, as similarity threshold
increases for ∆HAL, a trend not apparent within the plot for
∆MCC. With this in mind, we now turn to the results of the
experiments.

The results of the ∆HAL experiment are as follows. There
is strong evidence (p-val < 2.2e-16) indicating an interaction
between the grammar size and similarity threshold, as depicted
in Fig. 4a, rejecting H1,0. Furthermore, there is strong evi-
dence (p-val < 2.2e-16) that not all levels of the similarity
threshold have an equal effect when controlling for other
sources of variability, rejecting H2,0. Additionally, there is
strong evidence (p-val < 2.2e-16) that not all levels of size
have the same effect, rejecting H3,0. Upon further comparison
to control, all levels of the similarity threshold showed strong
evidence of a greater effect on ∆HAL, rejecting H4,0. Finally,
there is strong evidence (JT-stat = 767, p-val = 6e-04) of a
decreasing order in effect on median ∆MCC coinciding with
an increase in the similarity threshold level, rejecting H5,0. This
evidence suggests that as the similarity threshold increases,
the value of ∆HAL decreases. Such a result is indicative
that the merging process reduces the maintenance effort as
the similarity threshold increases.



(a) Delta HAL boxplots.

(b) Delta MCC boxplots.

Fig. 3. Boxplots for the ∆HAL and ∆MCC experiments

The results of the ∆MCC experiment are as follows. There
is marginal evidence (p-val = 0.2534) indicating an interaction
between the grammar size and similarity threshold, as depicted
in Fig. 4b, a failure to reject H2,0, thus the interaction was
removed from the model. Furthermore, there is moderate
evidence (p-val = 0.141) that there is a difference in the effects
of the levels of similarity threshold when controlling for other
sources of variability, reject H2,0. Additionally, there is strong
evidence (p-val < 2e-16) that there is a difference in the effects
of the levels of size, reject H3,0. Upon further comparison
to control, similarity thresholds 0.25, 0.5, and 0.75 show
strong evidence of a greater effect on complexity than control,
but there is no evidence for this at the 1.0 level. Finally,
there is strong evidence (JT-stat = 742, p-val = 3e-04) of a

(a) Delta HAL experiment interaction plot.

(b) Delta MCC experiment interaction plot.

Fig. 4. Interaction plots for the ∆HAL and ∆MCC experiments

decreasing order in effect on median ∆MCC coinciding with
an increase in the similarity threshold level. This evidence,
overall, suggests that as the similarity threshold increases, the
value of ∆MCC decreases. Such a result is indicative that
the merging process reduces the maintenance effort as the
similarity threshold increases. We note the result comparing
the similarity threshold level of 1.0 compared to control will
require further evaluation.

The results indicate that the merge process reduces the
Halstead Effort and McCabe Cyclomatic Complexity of a
combined grammar at each threshold below the control thresh-
old, regardless of size. The results also indicate there is an
increasing order to the amount of change in Halstead Effort
and Cyclomatic Complexity caused by the algorithm as the



similarity threshold decreases. These results imply that smaller
values of the similarity threshold produce better results.

Since this was a randomized experiment, one may infer that
the difference in similarity threshold caused the difference in
Halstead Effort and McCabe Cyclomatic Complexity. Because
the subjects were selected randomly from the population of
Antlr grammars, we can extend this inference to that popula-
tion. However, extending this inference to the population of
grammars as a whole is speculative at best. This deficiency,
however, is minor; the causal relationship is strong even
though it applies only to Antlr grammars.

VI. THREATS TO VALIDITY

In this work, we focused on threats to the conclusion,
construct, internal, and external validity, as detailed by Wohlin
et al. [22]. We have identified that there are no threats to
the conclusion or construct validity. Nevertheless, there is a
threat to the internal validity due to the under-representation
of the domain, since we selected grammars only from Antlr.
Additionally, there is a threat to external validity due to the
restriction of representations to BNF and Antlr4 precludes the
ability to evaluate TXL, SDF, or other grammar formats.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we develop an algorithmic approach to merge
programming language grammars. The goal is to facilitate the
automatic creation of Island Grammars to aid in the devel-
opment of multi-lingual software analysis tools. To evaluate
this approach, we examined its effect on Halstead Effort and
McCabe Cyclomatic Complexity. The experimental results
showed that the merging approach reduces the merged gram-
mar’s Halstead Effort and Cyclomatic Complexity when con-
trolling grammar size and similarity threshold. These results
present a promising avenue toward automated Island Grammar
generation and, therefore, multi-lingual analysis tools.

There are several avenues for future work. Initially, we
intended to conduct further studies to improve the results
herein by expanding the study to grammars selected from the
GrammarZoo [23] collection. As part of this, we intend to
extend the capabilities of this approach to incorporate tree-
based grammars such as TXL and SDF, which will also reduce
threats to validity. Additionally, we are currently integrating
this approach into a more extensive process for the automated
construction of Island Grammars for use in static analysis and
quality measurement of software systems.

ACKNOWLEDGEMENTS

This research is supported by funding from the Ronald E.
McNair Post Baccalaureate Achievement Program at Idaho
State University, which is sponsored by the Department of
Education (P217A170169).

REFERENCES

[1] Z. Mushtaq, G. Rasool, and B. Shehzad, “Multilingual Source Code
Analysis: A Systematic Literature Review,” IEEE Access, vol. 5, pp.
11 307–11 336, 2017, bibtex: mushtaqMultilingualSourceCode2017.

[2] A. Janes, D. Piatov, A. Sillitti, and G. Succi, “How to Calculate
Software Metrics for Multiple Languages Using Open Source Parsers,”
in Open Source Software: Quality Verification, E. Petrinja, G. Succi,
N. El Ioini, and A. Sillitti, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, vol. 404, pp. 264–270. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-38928-3_20

[3] N. Synytskyy, J. R. Cordy, and T. R. Dean, “Robust multilingual parsing
using island grammars,” in Proceedings of the 2003 conference of the
Centre for Advanced Studies on Collaborative research. IBM Press,
2003, pp. 266–278.

[4] G. Caldiera, V. R. Basili, and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[5] M. Haoxiang, Languages and Machines: An Introduction to the Theory
of Computer Science, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co. Inc., 1988.

[6] L. Moonen, “Generating robust parsers using island grammars,” in
Proceedings Eighth Working Conference on Reverse Engineering, Oct.
2001, pp. 13–22.

[7] A. V. Deursen and T. Kuipers, “Building documentation generators,” in
Proceedings IEEE International Conference on Software Maintenance
- 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No.99CB36360), Aug. 1999, pp. 40–49.

[8] L. Moonen, “Lightweight Impact Analysis using Island Grammars.” in
IWPC. Citeseer, 2002, pp. 219–228.

[9] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering. ACM, 2008, pp. 308–318.

[10] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Extracting structured
data from natural language documents with island parsing,” in Auto-
mated Software Engineering (ASE), 2011 26th IEEE/ACM International
Conference on. IEEE, 2011, pp. 476–479.

[11] S. Klusener and R. Lammel, “Deriving tolerant grammars from a base-
line grammar,” in International Conference on Software Maintenance.
IEEE, 2003, pp. 179–188.

[12] A. Goloveshkin and S. Mikhalkovich, “Tolerant parsing with
a special kind of «Any» symbol: the algorithm and practical
application,” Proceedings of the Institute for System Programming
of the RAS, vol. 30, no. 4, pp. 7–28, 2018. [Online]. Available:
http://www.ispras.ru/en/proceedings/isp_30_2018_4/isp_30_2018_4_7/

[13] J. Kurš, M. Lungu, R. Iyadurai, and O. Nierstrasz, “Bounded seas,”
Computer languages, systems & structures, vol. 44, pp. 114–140, 2015.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge Massachusetts: The MIT Press,
2001.

[15] J. F. Power and B. A. Malloy, “A metrics suite for grammar-based
software,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 16, no. 6, pp. 405–426, Nov. 2004. [Online].
Available: http://doi.wiley.com/10.1002/smr.293

[16] T. Parr, The definitive ANTLR 4 reference, ser. The pragmatic pro-
grammers. Dallas, Texas: The Pragmatic Bookshelf, 2012, oCLC:
ocn802295434.

[17] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design
of object-oriented systems. Berlin; London: Springer, 2011, oCLC:
750954916.

[18] D. C. Montgomery, Design and analysis of experiments, eighth edi-
tion ed. Hoboken, NJ: John Wiley & Sons, Inc, 2013.

[19] J. J. Higgins, An introduction to modern nonparametric statistics.
Pacific Grove, CA: Brooks/Cole, 2004.

[20] R. G. D. Steel, “A multiple comparison rank sum test: Treatments
versus control,” Biometrics, vol. 15, no. 4, p. 560, Dec. 1959. [Online].
Available: http://www.jstor.org/stable/2527654?origin=crossref

[21] A. R. Jonckheere, “A Distribution-Free k-Sample Test Against Ordered
Alternatives,” Biometrika, vol. 41, no. 1/2, p. 133, Jun. 1954. [Online].
Available: https://www.jstor.org/stable/2333011?origin=crossref

[22] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-29044-2

[23] V. Zaytsev, “Grammar Zoo: A corpus of experimental grammarware,”
Science of Computer Programming, vol. 98, pp. 28–51, Feb.
2015. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0167642314003347


