
TrueRefactor: An Automated Refactoring Tool to Improve Legacy System and Application

Comprehensibility

Isaac Griffith, Scott Wahl, Clemente Izurieta

Computer Science Department

Montana State University

Bozeman, MT

{isaac.griffith, scott.wahl}@msu.montana.edu

clemente.izurieta@cs.montana.edu

Abstract

Manual refactoring is a complicated process requiring

intimate knowledge of the software design and underlying

intended behavior of a system. This knowledge is not

always available. Fully automated refactoring, using a

meta-heuristic based search that is dependent on software

quality metrics and code smells as a guide, eliminates the

need for the developer to be intimately connected to the

software under modification. Computer applications in

industry and engineering benefit significantly from new

approaches to self-correcting refactoring software.

TrueRefactor is an automated refactoring tool that

significantly improves the comprehensibility of legacy

systems. The goal of TrueRefactor is to modify legacy

object-oriented systems in order to increase the

understandability, maintainability and reusability aspects

of legacy software, and to simultaneously generate new

UML documentation in order to help developers

understand the changes being made.

This paper presents the research behind the design, as

well as a technical overview of the implementation of

TrueRefactor. We summarize the research goals that

TrueRefactor addresses, and identify opportunities where

it can be actively utilized.

1 INTRODUCTION

The drive for an automated refactoring tool, utilizing

metrics-based code smell detection techniques, stems

from the decrease in effort and time spent in manually

performing these actions [21]. Currently, there are a

number of refactoring tools available to aid developers

[15], [11], [17], [16]. Most available tools provide

developers with a list of specific refactoring techniques,

but require the developer to manually select the code to be

refactored [15]. Alternatively, the use of automated

search-based refactoring techniques does not depend on

developer supplied information and can result in

incremental and unsupervised changes.

Traditional search based techniques rely on a suite of

software quality metrics to determine the relevance of a

mapping between a set of refactorings and their associated

code [15]. Two prominent considerations for these

techniques are determining the most effective suite of

metrics to use for the refactoring fitness evaluation, and

selecting the best search technique to explore the potential

refactoring solution space. A review of the literature

shows a specific focus on understanding the relationships

between software quality metrics and their corresponding

refactoring selection [16], [13]. Herein we present an

approach based on machine learning and metric guided

genetic algorithms to automate refactorings of legacy and

application code. This approach is demonstrated through

the implementation of TrueRefactor.

This paper is structured as follows. Section 2 presents

the design and implementation of the TrueRefactor tool. It

describes the underlying refactoring mechanism and

describes the underlying genetic algorithm fitness

function and search technique utilized. Section 3 provides

a summary of the method of evaluation for TrueRefactor.

Section 4 provides a brief analysis of results provided in

Section 3. Section 5 describes the research goal and

potential future research which can utilize techniques

developed for TrueRefactor. Finally, in Section 6, we

provide a conclusion and explore future work as it applies

to enhancing the capabilities of TrueRefactor.

2 TRUEREFACTOR DESIGN

TrueRefactor allows a developer to automatically

refactor and remove code smells from source code. The

basic operation of TrueRefactor is exemplified using a

data flow diagram, shown in Figure 1. The input

parameter to TrueRefactor is a codebase directory. Each

source code file in the directory is parsed and then used to

create a control flow graph representing the entire

structure of the software. Using this graph, an initial

measurement of code smells is obtained, and for each

code smell found, a refactoring sequence of algorithms

(designed to remove the specific smell) is generated.

A genetic algorithm (GA) is then utilized to search for

the best (fittest) sequence of refactorings that removes the

highest number of code smells from the original source

code. The solution space that the GA searches is

comprised of the set of potential refactoring sequences.

The best solution is the sequence whose ordering removes

Figure 2. Screenshot of the TrueRefactor User Interface During Operation

the highest number of code smells. The sequences of

refactorings are seeded during the initial code smell

measurement process across the originally generated code

graph. Decision algorithms are then invoked to create a

sequence of refactorings designed to remove said code

smells.

Each refactoring sequence potentially becomes a

member of sequence of sequences which compose an

individual or the population evaluated by the GA. Each

individual is then provided a copy of the latest code graph

(via an Object Pool [4]). The GA then uses the refactoring

techniques associated with the code smells found in this

individual to modify its copy of the graph. The modified

graph is evaluated for potentially remaining code smells

before software quality metrics are evaluated.

After each individual in a generation of the GA is

evaluated, a subset of the best individuals is selected for

retention. The members of this subset are then used to

generate members of the next generation. Refactoring is

considered complete when either the amount of remaining

code smells has dropped below a threshold value, or when

a set number of maximum iterations have been

completed. Finally, once refactoring is complete, a new

UML class diagram (based on the graph of the best

individual set of refactoring sequences) is produced using

the Eclipse Modeling Framework and saved to the output

directory in XML Metadata Interchange format [24].

TrueRefactor has a basic graphical user interface. The

user interface, shown in Figure 2, is simple and can be

controlled by entering basic information such as the

location of the source code to be refactored, and the

output locations for refactored UML diagrams and log

Figure 1. Basic Operation of TrueRefactor.

files. Other parameters for the genetic algorithm can also

be entered and/or modified via the graphical interface (in

the GA Configuration section as shown in the middle of

the left column of Figure 2), but if values are left blank or

unchanged (from the defaults) the program will

automatically analyze the source code in order to generate

necessary parameters for the GA. The center pane of the

graphical interface provides a dynamic log that tracks the

operation of the GA. The information displayed is also

stored in a more convenient form in the log output

directory.

2.1 Code Smell Detection

We implemented code smell detection and decision

algorithms for 5 code smells, described as follows: 1)

Lazy Class: A class that does not do enough to justify its

existence; 2) Long Method: A method that is very long,

quite complex, and is responsible for more than one

behavior; 3) Large Class: A class that attempts to take too

much responsibility onto itself; 4) Shotgun Surgery:

Condition when you must make a lot of small changes to

a lot of classes in order to make a single large

modification; and 5) Temporary Field: An instance

variable whose use is dependent on a specific set of

circumstances. A brief description of the code smell

detection algorithms can be found in Table 2.

The decision algorithms were based on Fowler’s

description of which refactorings could be applied for a

given code smell (see [8]). This generates a sequence of

refactorings (if the pre- and post-conditions of each

refactoring is met), which should resolve the code smell.

Thus, the selection of refactorings is dependent on the

code smells currently implemented.

2.2 Implemented Refactorings

As an automated refactoring tool, TrueRefactor does

perform the actual refactorings, but currently only

supports the modification of UML rather than code. The

modification of the source code is scheduled to be added

later in the tool’s development. The reasoning behind

designing our own refactoring engine, instead of utilizing

refactoring engines such as those in IDE’s like eclipse,

was to prevent reliance on or attachment to any specific

tools. It also allows us the ability to utilize refactorings

those engines do not include.

In order to utilize the decision algorithms associated

with the code smell detection, a variety of refactoring

techniques were needed. Each refactoring itself has a set

of pre- and post-conditions which must be met. As a part

of the refactoring algorithm design if these pre- and post-

conditions are not met then the system will not continue

with the refactoring and will not attempt to resolve the

code smell. With code smell resolution in mind we have

implemented 12 refactorings from the following three

categories (see Table 1 for a concise list):

2.2.1 Class-Level Refactorings:

Inline Class: Replaces all instances of a class by

moving the internals of that class where the instances are

used; Collapse Hierarchy: Removes a non-leaf class from

its inheritance hierarchy by moving its fields and methods

up or down the hierarchy; Extract Class: Finds related

components within a class C that are not related to any

other components of C and forms a new class containing

them.

2.2.2 Method-Level Refactorings:

Move Method: Moves a method from one class A to

another class B; Extract Method: Takes a set of related

statements in some method A and uses them to generate a

TABLE I. REFACTORINGS SELECTED

Refactoring Level Refactoring

Class-Level

Inline Class

Collapse Hierarchy

Extract Class

Method-Level

Move Method

Extract Method

Pull Up Method

Push Down Method

Field-Level

Self-Encapsulate Field

Encapsulate Field

Move Field

Pull Up Field

Push Down Field

TABLE 2. CODE SMELLS DETECTION ALGORITHMS

Associated Code

Smell

Algorithm Description

Lazy Class

(LYCL)
a

Uses a combination of CS, WMC,

CBO, DIT, and number of methods

to detect lazy class.

Temporary Field

(TMPF)
a

Uses the number of instance

variables which are referenced by

methods of the same class.

Long Method

(LNGM)
b

Uses a combination of WMC and

CS to compare the method to

determine if it is too long.

Large Class

(LGCL)
b

Uses CBO, WMC, CS and DIT to

find a larger than normal class.

Shotgun Surgery

(SHOSUR)
b

Uses LCOM and CBO to find inter-

class complexity to find this smell.
a. Descriptions based on algorithms found in [14]

b. Descriptions based on algorithms found in [19]

new method B; Pull Up Method and Push Down Method:

Move a method up or down, respectively, in an

inheritance hierarchy.

2.2.3 Field-Level Refactorings:

Self-Encapsulate Field and Encapsulate Field: Provides

accessor and mutator for a field and declares the field as

private, then replaces direct accesses to the field with calls

to the generated methods; Move Field: Moves a field

from a class C to a more appropriate class; Pull Up Field

and Push Down Field: Moves a field up or down,

respectively, within an inheritance hierarchy.

2.3 Fitness Evaluation

Unlike other similar tools, we have opted not to define

the fitness evaluation of individuals based solely on

software quality metrics. Although we are attempting to

improve the understandability, maintainability, and

reusability of the code by improving the readings of

selected software quality metrics, TrueRefactor’s primary

goal is to remove source code smells. As the GA reduces

the number of code smells, we also observe a general

improvement in the software as measured by the quality

metrics.

3 TOOL EVALUATION

This section presents a summary of the method used to

evaluate TrueRefactor. In order to evaluate the refactoring

capability and code smell removal functionality in

TrueRefactor, we developed a test program. The program

design included functionality to support a simple

navigation tool for a virtual vessel in a 2D setting. It was

designed such that allowing us to inject code smells in

each experiment would a very quick and easy process.

From this codebase we created three separate

experimental variations of the source code that

maintained the same functionality. For each variation of

the source code, we injected code smells and ran

TrueRefactor. We then compared the results of each

experiment to the results of running the tool across the

original unmodified code base. We found both, a decrease

in the amount of code smells present in each experimental

codebase, and reduced measurements in the metrics used

as surrogates for comprehensibility (as measured through

the surrogate product metrics).

Along with an evaluation of the decrease in both code

smell and metrics values and the comparisons to the

control group, we used UML comparison as well. The

tool generates both an initial UML class diagram and a

final (after refactoring) class diagram. By visually

comparing and through analysis the final diagram can be

used to determine whether the final product is less

complex and more comprehensible.

Below are the results from one of the experiments.

Figures 3-6 represents the results from the application of

TrueRefactor across the experimental code base with

codes smells injected.

Figure 3. Code smell counts of the fittest individual of a
population for each iteration of the genetic algorithm

Figure 4. Comparison between smell counts before and after the
genetic algorithm processes the source code

Figure 5. Average CK-metric values of the subject’s codebase

after every iteration of the genetic algorithm

4 ANALYSIS

In this section we describe and analysis the results of

the experiment. In both Figures 3 and 5 the curves come

down quickly and then flatten out, yet the GA continued

until 1000 iterations was reached. This stems from a

design decision in which 1000 iterations is the minimum

amount of iterations and has been selected to help ensure

that the best sequence of refactorings has been found. In

Figure 4 the measured code smell at the initiation of the

GA and at the end can be seen, with a reduction in overall

code smell counts. Figure 6 shows a similar view

concerning the comparision of initial and final

measurements for the surrogate metrics. This data (along

with the other experiments) leads us to the conclusion that

the software is capable of removing code smell through

search base refactoring. Yet, additional code smells and

refactorings are still required to begin testing

TrueRefactor on larger scale problems.

5 APPLICATIONS OF TRUEREFACTOR

In this section we investigate potential applications of

TrueRefactor, related research and future plans.

5.1 Current Work

The goal of TrueRefactor is to provide a tool that can

be used to explore the concept of automated refactoring as

it applies to legacy software and engineering applications.

Initially we wanted to explore the possibility of increasing

the overall understandability and reusability

(comprehensibility) of a software product. The

improvement of the underlying quality aspects of the

software is measured by removing code smells and

observing a decrease in measured surrogate quality

metrics. In order to test the abilities of TrueRefactor, a

system was designed, and code smells were injected into

the source code. During each experiment the tool

performed adequately and was able to find and remove

injected code smells. A full description of the experiment

can be found in [9].

5.2 Exploring the Relationship between Metrics,

Refactoring and Code Smells

Although Fowler and others [8], [14], [19], [13] have

provided the underlying ideas connecting code smells and

refactoring, the exact relationship connecting metrics,

refactoring, and code smells together is still elusive.

Utilizing the underlying techniques of TrueRefactor we

plan to explore these relationships further to define new

mapping possibilities as well as connections to other

negative evolutionary side effects such as anti-patterns,

increases in test requirements [10], increases in coupling,

grime buildup, or decay in general.

5.3 Exploring Refactoring

The process of refactoring requires that an assumption

be made –if the refactoring is carried out correctly then

the behavior of the software will be preserved even

though the static structure of the software is changed. In

order for automated refactoring tools such as

TrueRefactor to be generally accepted by industry and

working developers, a rigorous mathematical framework

(a set of mathematical relationships and definitions

utilized to provide a succinct and unambiguous

description of a given entity, relationship, or object) is

needed. We would like to utilize this tool as a seminal

base to begin the development of such a framework.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented TrueRefactor, an

automated refactoring tool. This tool currently works with

the Java language and focuses on the elimination of code

smells as a means to improve the comprehensibility of

existing software. This tool also focuses on the

improvement of the design of the software through the

generation of improved UML class diagrams (as

compared to the UML diagram generated for the code

base prior to starting refactoring). This research is a step

toward understanding that automated refactoring is

currently limited if it is to be used as the only means to

improve software. Manual intervention is still needed,

and hybrid approaches continue to provide the best-in-

class solutions. Facilitating the transition from initial code

to modified code is an eventual goal of this project.

Focusing on mitigating these automated difficulties will

be an avenue for continued and future research.

Figure 6. Comparison of initial and final metric measurements

after the genetic algorithm processes the source code

In order to further enhance the viability of

TrueRefactor and of automated refactoring in general,

several key issues need to be addressed. First is the ability

to handle multiple languages by developing and utilizing

parsing technology which provides a sufficient and

unified interface to the parse tree. Second, we need the

ability to generate complete working code. Third, the

ability to generate more detailed documentation of the

automated changes so that developers can understand

what changes the software has undergone. Finally, the

ability to allow developers to control the removal of code

smells from the code is required. Once these

improvements have occurred the application of these

methods to larger projects will help to validate and refine

automated refactoring as a whole.

7 REFERENCES

[1] M. Afenzeller, S. Winkler, S. Wagner, and B. Andreas, Genetic

Algorithms and Genetic Programming: Modern Concepts and
Practical Applications, Chapman & Hall/CRC Taylor & Francis
Group, Boca Raton, FL , pp. 1–70, 2009.

[2] M. Bowman, L. C. Briand, and Y. Labiche, “Multi-Objective
Genetic Algorithms to Support Class Responsibility Assignment,”
Proc. of the IEEE International Conference on Software
Maintenance (ICSM 2007), pp. 124-133, 2007.

[3] F. Budinsky, D. Steinburg, E. Merks, R. Ellersick, and T. J. Grose,
Eclipse Modeling Framework: A Developer’s Guide, Pearson
Education, Inc., Upper Saddle River, NJ, pp. 89-280, 2004.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons Ltd., Hoboken, NJ, pp. 25-193, 1996.

[5] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. on Software Engineering, vol.
35(6), pp. 476-493, 1994.

[6] C. Chisalita-Cretu, “A Multi-Objective Approach for Entity
Refactoring Set Selection Problem”, Second International
Conference on the Applications of Digital Information and Web
Technologies, pp. 790–795, 2009.

[7] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, Revised, 2nd ed, PWS Publishing Co., Boston,
MA, 1998.

[8] M. Fowler and K. Beck, Refactoring: Improving the Design of
Existing Code, Addison-Wesley, New York, pp. 27–100, 2000.

[9] I. Griffith, S. Wahl and C. Izurieta, “Evolution of Legacy System
Comprehensibility through Automated Refactoring,” unpublished.

[10] C. Izurieta, J. M. Biemanm, “Testing Consequences of Grime
Buildup in Object Oriented Design Patterns,” 1st ACM-IEEE

International Conference on Software Testing, ICST ’08,
Lillehammer, Norway, 2008.

[11] M. Harman and L. Tratt. “Pareto Optimal Search Based
Refactoring at the Design Level,” In Proceedings of the
Conference on Genetic and Evolutionary Computation, 2007.

[12] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” The Journal of Systems and Software, vol. 23(2),
pp. 111–112, doi: 10.1016/0164-1212(93)90077-B, 1993.

[13] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” Proc. 20th IEEE International Conference
on Software Maintenance (ICSE ’04), pp. 350- 359, 2004.

[14] J. Munro, “Product Metrics for Automatic Identification of “Bad
Smell” Design Problems in Java Source-Code,” Proc. 11th IEEE
International Software Metrics Symposium (METRICS ‘05), pp.
15 doi: /10.1109/METRICS.2005.38, 2005.

[15] M. O'Keeffe and M. O. Cinneide, “Search-Based Software
Maintenance,” Proc. of the 10th European Conference on Software
Maintenance and Reengineering, CSMR 2006, pp. 10, doi:
10.1109/CSMR.2006.49, 2006.

[16] O. Raiha, “A Survey on Search-Based Software Design,”
Computer Science Review, 4(4):203-249, 2010.

[17] F. Otero et al., “Refactoring in Automatically Generated
Programs,” Proc. Symposium on Search Based Software
Engineering, 2010.

[18] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
7th ed., McGraw-Hill, New York, pp. 613–44, 2010.

[19] N. Roperia, JSmell: A Bad Smell Detection Tool for Java Systems,
UMI Microform 1466306, 2009.

[20] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd ed., Pearson Education, Inc., Upper Saddle River,
NJ, 2010.

[21] J. Schumacher, N. Zazworka, F. Shull, C. Seaman and M. Shaw,
“Building Empirical Support for Automated Code Smell
Detection,” Proc. 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM ’10),
doi:/10.1145/1852786.1852797, 2010

[22] O. Seng, J. Stammel, and D. Burkhart, “Search-Based
Determination of Refactorings for Improving the Class Structure of
Object-Oriented Systems,” Proc. Conference on Genetic and
Evolutionary Computation, pp.1909-1916, 2006.

[23] N. Tsantali and A. Chatzigeorgiou, “Identification of Move
Method Refactoring Opportunities,” IEEE Trans. on Software
Engineering, vol. 35(3), pp. 347–367, 2009.

[24] XML Metadata Interchange, Object Modeling Group, 2005,
<http://www.omg.org/spec/XMI/ISO/19503/PDF/>.

[25] Unified Modeling Language, Version 2.3, Object Modeling Group,
2010, <http://www.omg.org/spec/UML/2.3/>.

[26] Java Compiler Compiler (JavaCC) <http://javacc.java.net/>

[27] Eclipse Modeling Framework Project (EMF).
<http://www.eclipse.org/modeling/emf/>.

