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Abstract 

 

Manual refactoring is a complicated process requiring 

intimate knowledge of the software design and underlying 

intended behavior of a system. This knowledge is not 

always available. Fully automated refactoring, using a 

meta-heuristic based search that is dependent on software 

quality metrics and code smells as a guide, eliminates the 

need for the developer to be intimately connected to the 

software under modification. Computer applications in 

industry and engineering benefit significantly from new 

approaches to self-correcting refactoring software.   

TrueRefactor is an automated refactoring tool that 

significantly improves the comprehensibility of legacy 

systems. The goal of TrueRefactor is to modify legacy 

object-oriented systems in order to increase the 

understandability, maintainability and reusability aspects 

of legacy software, and to simultaneously generate new 

UML documentation in order to help developers 

understand the changes being made. 

This paper presents the research behind the design, as 

well as a technical overview of the implementation of 

TrueRefactor. We summarize the research goals that 

TrueRefactor addresses, and identify opportunities where 

it can be actively utilized. 

1 INTRODUCTION 

 

The drive for an automated refactoring tool, utilizing 

metrics-based code smell detection techniques, stems 

from the decrease in effort and time spent in manually 

performing these actions [21]. Currently, there are a 

number of refactoring tools available to aid developers 

[15], [11], [17], [16]. Most available tools provide 

developers with a list of specific refactoring techniques, 

but require the developer to manually select the code to be 

refactored [15]. Alternatively, the use of automated 

search-based refactoring techniques does not depend on 

developer supplied information and can result in 

incremental and unsupervised changes.  

Traditional search based techniques rely on a suite of 

software quality metrics to determine the relevance of a 

mapping between a set of refactorings and their associated 

code [15]. Two prominent considerations for these 

techniques are determining the most effective suite of 

metrics to use for the refactoring fitness evaluation, and 

selecting the best search technique to explore the potential 

refactoring solution space. A review of the literature 

shows a specific focus on understanding the relationships 

between software quality metrics and their corresponding 

refactoring selection [16], [13].  Herein we present an 

approach based on machine learning and metric guided 

genetic algorithms to automate refactorings of legacy and 

application code.  This approach is demonstrated through 

the implementation of TrueRefactor. 

This paper is structured as follows. Section 2 presents 

the design and implementation of the TrueRefactor tool. It 

describes the underlying refactoring mechanism and 

describes the underlying genetic algorithm fitness 

function and search technique utilized. Section 3 provides 

a summary of the method of evaluation for TrueRefactor. 

Section 4 provides a brief analysis of results provided in 

Section 3. Section 5 describes the research goal and 

potential future research which can utilize techniques 

developed for TrueRefactor. Finally, in Section 6, we 

provide a conclusion and explore future work as it applies 

to enhancing the capabilities of TrueRefactor. 

 

2 TRUEREFACTOR DESIGN 

 

TrueRefactor allows a developer to automatically 

refactor and remove code smells from source code. The 

basic operation of TrueRefactor is exemplified using a 

data flow diagram, shown in Figure 1. The input 

parameter to TrueRefactor is a codebase directory. Each 

source code file in the directory is parsed and then used to 

create a control flow graph representing the entire 

structure of the software. Using this graph, an initial 

measurement of code smells is obtained, and for each 

code smell found, a refactoring sequence of algorithms 

(designed to remove the specific smell) is generated. 

A genetic algorithm (GA) is then utilized to search for 

the best (fittest) sequence of refactorings that removes the 

highest number of code smells from the original source 

code. The solution space that the GA searches is 

comprised of the set of potential refactoring sequences. 

The best solution is the sequence whose ordering removes 



 

Figure 2. Screenshot of the TrueRefactor User Interface During Operation 

the highest number of code smells. The sequences of 

refactorings are seeded during the initial code smell 

measurement process across the originally generated code 

graph. Decision algorithms are then invoked to create a 

sequence of refactorings designed to remove said code 

smells.  

Each refactoring sequence potentially becomes a 

member of sequence of sequences which compose an 

individual or the population evaluated by the GA. Each 

individual is then provided a copy of the latest code graph 

(via an Object Pool [4]). The GA then uses the refactoring 

techniques associated with the code smells found in this 

individual to modify its copy of the graph. The modified 

graph is evaluated for potentially remaining code smells 

before software quality metrics are evaluated.  

After each individual in a generation of the GA is 

evaluated, a subset of the best individuals is selected for 

retention. The members of this subset are then used to 

generate members of the next generation. Refactoring is 

considered complete when either the amount of remaining 

code smells has dropped below a threshold value, or when 

a set number of maximum iterations have been 

completed. Finally, once refactoring is complete, a new 

UML class diagram (based on the graph of the best 

individual set of refactoring sequences) is produced using 

the Eclipse Modeling Framework and saved to the output 

directory in XML Metadata Interchange format [24].  

TrueRefactor has a basic graphical user interface. The 

user interface, shown in Figure 2, is simple and can be 

controlled by entering basic information such as the 

location of the source code to be refactored, and the 

output locations for refactored UML diagrams and log 

 

Figure 1. Basic Operation of TrueRefactor. 

 



files. Other parameters for the genetic algorithm can also 

be entered and/or modified via the graphical interface (in 

the GA Configuration section as shown in the middle of 

the left column of Figure 2), but if values are left blank or 

unchanged (from the defaults) the program will 

automatically analyze the source code in order to generate 

necessary parameters for the GA. The center pane of the 

graphical interface provides a dynamic log that tracks the 

operation of the GA. The information displayed is also 

stored in a more convenient form in the log output 

directory. 

 

2.1 Code Smell Detection 

 

We implemented code smell detection and decision 

algorithms for 5 code smells, described as follows: 1) 

Lazy Class: A class that does not do enough to justify its 

existence; 2) Long Method: A method that is very long, 

quite complex, and is responsible for more than one 

behavior; 3) Large Class: A class that attempts to take too 

much responsibility onto itself; 4) Shotgun Surgery: 

Condition when you must make a lot of small changes to 

a lot of classes in order to make a single large 

modification; and 5) Temporary Field: An instance 

variable whose use is dependent on a specific set of 

circumstances. A brief description of the code smell 

detection algorithms can be found in Table 2. 

The decision algorithms were based on Fowler’s 

description of which refactorings could be applied for a 

given code smell (see [8]). This generates a sequence of 

refactorings (if the pre- and post-conditions of each 

refactoring is met), which should resolve the code smell. 

Thus, the selection of refactorings is dependent on the 

code smells currently implemented. 

 

2.2 Implemented Refactorings 

 

As an automated refactoring tool, TrueRefactor does 

perform the actual refactorings, but currently only 

supports the modification of UML rather than code. The 

modification of the source code is scheduled to be added 

later in the tool’s development. The reasoning behind 

designing our own refactoring engine, instead of utilizing 

refactoring engines such as those in IDE’s like eclipse, 

was to prevent reliance on or attachment to any specific 

tools. It also allows us the ability to utilize refactorings 

those engines do not include.  

In order to utilize the decision algorithms associated 

with the code smell detection, a variety of refactoring 

techniques were needed. Each refactoring itself has a set 

of pre- and post-conditions which must be met. As a part 

of the refactoring algorithm design if these pre- and post-

conditions are not met then the system will not continue 

with the refactoring and will not attempt to resolve the 

code smell. With code smell resolution in mind we have 

implemented 12 refactorings from the following three 

categories (see Table 1 for a concise list): 

 

2.2.1 Class-Level Refactorings: 

 

Inline Class: Replaces all instances of a class by 

moving the internals of that class where the instances are 

used; Collapse Hierarchy: Removes a non-leaf class from 

its inheritance hierarchy by moving its fields and methods 

up or down the hierarchy; Extract Class: Finds related 

components within a class C that are not related to any 

other components of C and forms a new class containing 

them.  

 

2.2.2 Method-Level Refactorings: 

 

Move Method: Moves a method from one class A to 

another class B; Extract Method: Takes a set of related 

statements in some method A and uses them to generate a 

TABLE I. REFACTORINGS SELECTED 

Refactoring Level Refactoring 

Class-Level 

Inline Class 

Collapse Hierarchy 

Extract Class 

Method-Level 

Move Method 

Extract Method 

Pull Up Method 

Push Down Method 

Field-Level 

Self-Encapsulate Field 

Encapsulate Field 

Move Field 

Pull Up Field 

Push Down Field 

 

TABLE 2. CODE SMELLS DETECTION ALGORITHMS 

Associated Code 

Smell 

Algorithm Description
 

Lazy Class 

(LYCL)
a 

Uses a combination of CS, WMC, 

CBO, DIT, and number of methods 

to detect lazy class. 

Temporary Field 

(TMPF)
a 

Uses the number of instance 

variables which are referenced by 

methods of the same class. 

Long Method 

(LNGM)
b 

Uses a combination of WMC and 

CS to compare the method to 

determine if it is too long. 

Large Class 

(LGCL)
b 

Uses CBO, WMC, CS and DIT to 

find a larger than normal class. 

Shotgun Surgery 

(SHOSUR)
b 

Uses LCOM and CBO to find inter-

class complexity to find this smell. 
a. Descriptions based on algorithms found in [14] 

b. Descriptions based on algorithms found in [19] 



new method B; Pull Up Method and Push Down Method: 

Move a method up or down, respectively, in an 

inheritance hierarchy. 

 

2.2.3 Field-Level Refactorings: 

 

Self-Encapsulate Field and Encapsulate Field: Provides 

accessor and mutator for a field and declares the field as 

private, then replaces direct accesses to the field with calls 

to the generated methods; Move Field: Moves a field 

from a class C to a more appropriate class; Pull Up Field 

and Push Down Field: Moves a field up or down, 

respectively, within an inheritance hierarchy. 

 

2.3 Fitness Evaluation 

 

Unlike other similar tools, we have opted not to define 

the fitness evaluation of individuals based solely on 

software quality metrics. Although we are attempting to 

improve the understandability, maintainability, and 

reusability of the code by improving the readings of 

selected software quality metrics, TrueRefactor’s primary 

goal is to remove source code smells. As the GA reduces 

the number of code smells, we also observe a general 

improvement in the software as measured by the quality 

metrics. 

 

3 TOOL EVALUATION 

This section presents a summary of the method used to 

evaluate TrueRefactor. In order to evaluate the refactoring 

capability and code smell removal functionality in 

TrueRefactor, we developed a test program. The program 

design included functionality to support a simple 

navigation tool for a virtual vessel in a 2D setting. It was 

designed such that allowing us to inject code smells in 

each experiment would a very quick and easy process. 

From this codebase we created three separate 

experimental variations of the source code that 

maintained the same functionality. For each variation of 

the source code, we injected code smells and ran 

TrueRefactor. We then compared the results of each 

experiment to the results of running the tool across the 

original unmodified code base. We found both, a decrease 

in the amount of code smells present in each experimental 

codebase, and reduced measurements in the metrics used 

as surrogates for comprehensibility (as measured through 

the surrogate product metrics). 

Along with an evaluation of the decrease in both code 

smell and metrics values and the comparisons to the 

control group, we used UML comparison as well. The 

tool generates both an initial UML class diagram and a 

final (after refactoring) class diagram. By visually 

comparing and through analysis the final diagram can be 

used to determine whether the final product is less 

complex and more comprehensible. 

Below are the results from one of the experiments. 

Figures 3-6 represents the results from the application of 

TrueRefactor across the experimental code base with 

codes smells injected. 

 

 

 

 

Figure 3. Code smell counts of the fittest individual of a 
population for each iteration of the genetic algorithm 

 

Figure 4. Comparison between smell counts before and after the 
genetic algorithm processes the source code 

 

Figure 5. Average CK-metric values of the subject’s codebase 

after every iteration of the genetic algorithm 



 

4 ANALYSIS 

 

In this section we describe and analysis the results of 

the experiment. In both Figures 3 and 5 the curves come 

down quickly and then flatten out, yet the GA continued 

until 1000 iterations was reached. This stems from a 

design decision in which 1000 iterations is the minimum 

amount of iterations and has been selected to help ensure 

that the best sequence of refactorings has been found. In 

Figure 4 the measured code smell at the initiation of the 

GA and at the end can be seen, with a reduction in overall 

code smell counts. Figure 6 shows a similar view 

concerning the comparision of initial and final 

measurements for the surrogate metrics. This data (along 

with the other experiments) leads us to the conclusion that 

the software is capable of removing code smell through 

search base refactoring. Yet, additional code smells and 

refactorings are still required to begin testing 

TrueRefactor on larger scale problems. 

 

 

5 APPLICATIONS OF TRUEREFACTOR 

 

In this section we investigate potential applications of 

TrueRefactor, related research and future plans. 

 

5.1 Current Work 

 

The goal of TrueRefactor is to provide a tool that can 

be used to explore the concept of automated refactoring as 

it applies to legacy software and engineering applications. 

Initially we wanted to explore the possibility of increasing 

the overall understandability and reusability 

(comprehensibility) of a software product. The 

improvement of the underlying quality aspects of the 

software is measured by removing code smells and 

observing a decrease in measured surrogate quality 

metrics. In order to test the abilities of TrueRefactor, a 

system was designed, and code smells were injected into 

the source code. During each experiment the tool 

performed adequately and was able to find and remove 

injected code smells.  A full description of the experiment 

can be found in [9]. 

 

5.2 Exploring the Relationship between Metrics, 

Refactoring and Code Smells 

 

Although Fowler and others [8], [14], [19], [13] have 

provided the underlying ideas connecting code smells and 

refactoring, the exact relationship connecting metrics, 

refactoring, and code smells together is still elusive. 

Utilizing the underlying techniques of TrueRefactor we 

plan to explore these relationships further to define new 

mapping possibilities as well as connections to other 

negative evolutionary side effects such as anti-patterns, 

increases in test requirements [10], increases in coupling, 

grime buildup, or decay in general. 

 

5.3 Exploring Refactoring 

 

The process of refactoring requires that an assumption 

be made –if the refactoring is carried out correctly then 

the behavior of the software will be preserved even 

though the static structure of the software is changed. In 

order for automated refactoring tools such as 

TrueRefactor to be generally accepted by industry and 

working developers, a rigorous mathematical framework 

(a set of mathematical relationships and definitions 

utilized to provide a succinct and unambiguous 

description of a given entity, relationship, or object) is 

needed. We would like to utilize this tool as a seminal 

base to begin the development of such a framework. 

 

6 CONCLUSIONS AND FUTURE WORK 

 

In this paper we have presented TrueRefactor, an 

automated refactoring tool. This tool currently works with 

the Java language and focuses on the elimination of code 

smells as a means to improve the comprehensibility of 

existing software. This tool also focuses on the 

improvement of the design of the software through the 

generation of improved UML class diagrams (as 

compared to the UML diagram generated for the code 

base prior to starting refactoring). This research is a step 

toward understanding that automated refactoring is 

currently limited if it is to be used as the only means to 

improve software.  Manual intervention is still needed, 

and hybrid approaches continue to provide the best-in-

class solutions. Facilitating the transition from initial code 

to modified code is an eventual goal of this project. 

Focusing on mitigating these automated difficulties will 

be an avenue for continued and future research. 

 

Figure 6. Comparison of initial and final metric measurements 

after the genetic algorithm processes the source code 



In order to further enhance the viability of 

TrueRefactor and of automated refactoring in general, 

several key issues need to be addressed. First is the ability 

to handle multiple languages by developing and utilizing 

parsing technology which provides a sufficient and 

unified interface to the parse tree. Second, we need the 

ability to generate complete working code. Third, the 

ability to generate more detailed documentation of the 

automated changes so that developers can understand 

what changes the software has undergone. Finally, the 

ability to allow developers to control the removal of code 

smells from the code is required. Once these 

improvements have occurred the application of these 

methods to larger projects will help to validate and refine 

automated refactoring as a whole. 
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