
Design Pattern Decay: The Case for Class Grime
Isaac Griffith and Clemente Izurieta

Department of Computer Science

Montana State University

PO Box 173880

+1 (406) 994-4780

isaac.griffith@msu.montana.edu

clemente.izurieta@cs.montana.edu

ABSTRACT
Context: We investigate class grime, a form of design pattern
decay, wherein classes of the pattern realization have extraneous
attributes or methods, which obfuscate the intended design of a
pattern. Goal: To expand the taxonomy of class grime using
properties of class cohesion. Using this expanded taxonomy we
explore the effect that forms of class grime have on pattern
realization understandability. Method: A pilot study utilizing a
formal experiment to explore the effects of class grime on design
pattern understandability. The experiments used simulated
injection of 8 types of class grime into design pattern realizations
randomly selected from 16 design pattern types from a set of 6541
realizations from 520 distinct software systems. Results: We found
that for each of the 8 identified class grime forms, understandability
was negatively affected. Conclusion: This work serves as early
communication of research for the validation of the extended
taxonomy as well as the method of grime injection used in the
experiment.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – Design Concepts,

Object-oriented design methods; D.2.11 [Software Engineering]:
Software Architectures – patterns.

General Terms
Measurement, Design, Experimentation.

Keywords
Software Architectures, Object Oriented Design Patterns, Software
Decay.

1. INTRODUCTION
Design patterns [8] over the last two decades have reached wide
spread use in the software engineering community. Yet even with
such a wide spread adoption and well-studied implementation
practices, design pattern realizations are not immune to decay over
their evolution [9-12]. The decay of pattern realizations,
specifically design pattern grime, involves the obfuscation or
deviation of pattern structure and behavior from the original intent
[10]. In this paper, we are concerned with the effects of class grime

buildup on design pattern understandability (a measure of how easy
it is to learn and comprehend the design of a software system [2]).
In order to evaluate this phenomena we have extended the existing
grime taxonomy [14] to include new forms of class grime. Within
this taxonomy we must first verify whether such forms of grime
constitute discernible disharmonies. Thus, our questions of interest
are as follows: i) Is there a difference between how types of class
grime affect design pattern understandability? ii) Is a difference in
the mean change in understandability due to each subtype of class
grime? and iii) Is there a difference between the classifications of
class grime: scope, context, and strength?
This paper is organized as follows: Section 2 explores the
background concepts and related work; Section 3 describes class
grime, proposes an extended grime taxonomy, and defines the types
of grime to be used in the experimental process; Section 4 details
the experimental design and underlying method; Section 5 covers
the analysis and discusses the results from the experiments; Finally,
section 6 concludes the paper and presents paths for future research.

2. BACKGROUND AND RELATED WORK
Software decay is a form of software evolution wherein a system
evolves such that it becomes “harder to change than it should be”
[6]. Izurieta and Bieman [10] identified two new forms of software
decay, involving design patterns: design pattern grime and design

pattern rot. Empirical studies have only confirmed the existence of
grime. Initially, grime was divided into three disjoint categories:
class, modular, and organizational (see type level of Figure 1) [10].

Seminal work by Izurieta [9] showed that pattern realizations tend
to accumulate artifacts that obscure the intended use of patterns.
Empirical studies further showed that, of the three types of grime,
modular grime was the most significant [11]. Schanz and Izurieta
[14] further expanded the taxonomy of modular grime into six
disjoint types of grime. They conducted empirical studies across

Figure 1. The extended class grime taxonomy.

Grime

Class ModularOrganizational

Direct Indirect

Internal ExternalInternal External

Pair SinglePair SinglePair SinglePair Single

IESGIEPGIISGIIPGDESGDEPGDISGDIPG

Type

Strength

Scope

Direction/

Context

Class

Grime

Izurieta and

Bieman [10]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’14, September 18–19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00.

Antonio Vetro'
http://dx.doi.org/10.1145/2652524.2652570

open source systems to validate and refine this extended taxonomy.
Further studies on grime have shown implications of grime on the
testability of a system [12]. Although evidence for class grime has
been inconclusive to date [11], we believe that this was due to a less
than refined definition of class grime, which the research herein is
a step towards validating.

3. CLASS GRIME TAXONOMY
The object in this study is class grime. Class grime is divided into
eight specific subtypes using properties of class cohesion to define
three categories: strength (direct or indirect), scope (internal or
external), and context (singular or pair), forming the taxonomy
depicted in Figure 1.

3.1 Class Cohesion
Cohesion is used to describe how well constructed a class is [4].
The higher the cohesion of a class the closer aligned its internal
components are towards a common goal. In design pattern
realizations, the classes should represent individual responsibilities
of the pattern and if the specification is implemented correctly each
class should have high cohesion, thus cohesion provides a basis to
determine whether a design pattern realization’s classes have been
afflicted with class grime.

3.1.1 Strength

Strength is indicated by the method in which attributes are locally
accessed by a class’ methods. The method of access can be either
direct (attributes are directly accessed by methods) or indirect
(attribute access through the use of an accessor/mutator methods).
Each of these can be seen in Figure 2, where the unbroken lines
between attributes (rectangles) and methods (rounded rectangles)
are direct relationships, and the lines broken by a smaller rounded
rectangle are indirect relationships. Direct attribute use provides a
stronger but more brittle relationship between the method and
attribute, causing issues when attempting to refactor by moving the
attribute. Whereas, indirect attribute use implies a more flexible and
weaker relationship between the method and attribute, but one
which is more amenable to refactoring.

3.1.2 Scope

In the context of pattern classes, scope can either be internal or
external. Internal refers to when an attribute of the class is accessed
by a local method (or local method pair, depending on context
(3.1.3)) defined by the pattern specification. External refers to when
an attribute is accessed by at least one local method (or local
method pair) not defined by the pattern specification. In Figure 2,
the internal/external division is shown by the dashed red line

dividing the class into methods/attributes associated with the
pattern specification of that class and those methods/attributes not
specified by the pattern specification. This provides a means to
distinguish between identification of attributes (internal) or
methods (external) which are obscuring the pattern
implementation, through a reduction in overall class cohesion.

3.1.3 Context

The context refers to the types of relationships taken into account
by surrogate metrics used to measure cohesion. The majority of
cohesion metrics take one of two perspectives: single-method use
or method pair use of attributes [4]. In order to satisfy the strength,
scope, and context aspects of the taxonomy we have selected two
metrics. The first is Tight Class Cohesion (TCC) [3] which
measures the cohesion of a class by looking at pairs of methods
with attributes in common, and it can handle both indirect and
direct attribute use. The second is the Ratio of Cohesive
Interactions (RCI) [5] metric which measures the cohesion of a
class by looking at how individual methods use attributes, and it
can handle both indirect and direct attribute use.

3.2 Grime Categories
Before defining each grime category, we need to formally define a
few concepts. Let ܲ be a specialization of RBML [7] that describes
a design pattern. The set of classes that describes ܲ is denoted by
C(P). For some class c א C(P), the set of methods defined by c are
denoted by M(c) and the set of attributes by A(c). A relationship, r,
exists between an attribute a א A(c) and a method m א M(c), if m
uses ܽ via direct/indirect access (denoted as r א Direct or
r ב Direct). The set of method calls to ݉௜ from methods within the
same class as mi is denoted by calls(݉௜). Finally, a method mi or
method pair (mi,mj) is internal iff for some c א C(P) ר
൫mi א M(c) ש (݉௜,mj) א M(c)൯ or is external iff for some
 c א C(P) ר ൫mi ב M(c) ש (݉௜ .M(c))൯ and i ് j ב mj ש M(c) ב
Direct Internal Pair Grime (DIPG). The set of invalid direct
internal class relationships between pairs of methods and attributes
within the classes of a pattern. DIPG can be observed when
(mi,mj) א Internal, (ri,rj) א Direct, ri.attribute = rj.attribute, and
TCC decreases.
Direct Internal Single Grime (DISG). The set of invalid direct
internal class relationships between single methods and attributes
within the classes of a pattern. DISG can be observed when
mi א Internal, ri א Direct, and RCI decreases.
Direct External Pair Grime (DEPG). The set of invalid direct
external class relationships between pairs of methods and attributes
within the classes of a pattern. DEPG can be observed when
(mi,mj) א External, (ri,rj) א Direct, (calls(mi) = ר ׎
mi א External) ש ൫calls൫mj൯ = ר ׎ mj א External൯, and TCC
decreases.
Direct External Single Grime (DESG). The set of invalid direct
external class relationships between single methods and attributes
within the classes of a pattern. DESG can be observed when
mi א External, ri א Direct, calls(mi) = ׎, and RCI decreases.
Indirect Internal Pair Grime (IIPG). The set of invalid indirect
internal class relationships between pairs of methods and attributes
within the classes of the pattern. IIPG can be observed when
(mi,mj) א Internal, ൫ri,rj൯ ב Direct, and TCC decreases.

Indirect Internal Single Grime (IISG). The set of invalid indirect
internal class relationships between single methods and attributes
within the classes of a pattern. IISG can be observed when
mi א Internal, ri ב Direct, calls(݉௜) = ׎, and RCI decreases.

Figure 2. Conceptual diagram of taxonomy categories within a

class.

Class

a1 a2 a3

m1 m2 m3 m4

Internal

External

accessor

Indirect External Pair Grime (IEPG). The set of invalid indirect
external class relationships between pairs of methods and attributes
within the classes of a pattern. IEPG can be observed when
(݉௜ ,mj) א External, (ri,rj) ב Direct, ri.attribute = rj.attribute,
(calls(mi) = ר ׎ mi א External) ש (calls൫mj൯ = ר ׎ mj א External),
and TCC decreases.
Indirect External Single Grime (IESG). The set of invalid
indirect external class relationships between single methods and
attributes within the classes of a pattern. IESG can be observed
when mi א External, ri ב Direct, calls(݉௜) = ׎, and RCI decreases.

4. PILOT STUDY
The purpose of the pilot study is to validate and refine each grime
category in the proposed taxonomy. A formal experiment was
conducted to examine the effect of class grime on the
understandability of design pattern realizations. We tested the
following hypotheses to determine if class grime affects pattern
realization understandability.
H1,0: There is no change in mean pattern realization
understandability due to class grime.
H2,0: There is no difference in the change in understandability
between indirect and direct class grime types.
H3,0: There is no difference in the change in understandability
between internal and external class grime types.
H4,0: There is no difference in the change in understandability
between single and pair class grime types.

4.1 Methodology
In order to answer the questions posed above, we elected to use a
randomized complete block design for this experiment. The
blocking factor is design pattern type, which has been set to the
following 16 pattern types: Abstract Factory, (Object) Adapter-
Command, Composite, Decorator, Façade, Factory Method,
Flyweight, Mediator, Observer, Prototype, Proxy, Singleton, State,
Strategy, Template Method, and Visitor. The response variable is
the change in understandability as measured by the QMOOD
software quality model [2]. Each treatment in this experiment is an
injection of one of the eight types of design pattern grime (see
Section 3.2).

4.1.1 Systems Studied

The experimental units under consideration are design pattern
realizations randomly selected from each of the 16 design pattern
types. Each design pattern realization has been extracted from a
subset of the Percerons component database [1], which includes
6521 distinct design pattern realizations (spread across the 16
specific design patterns used) and contained in over 520 open
source software systems.

4.1.2 Data Collection1

Data collection was conducted as follows. First we randomly
selected the design pattern realizations from the design pattern
types to form the blocks. We then randomly assigned one of the
grime injection treatments to each of the realizations in a block. We
then randomized the treatment/instance pairs. By processing the
randomized list we locate each realization’s source files, parse them
and collect the necessary metrics. The parser generates a model
representing the information stored in the software (see Figure 3).
Using the appropriate grime injection method, we inject the
methods and attribute or method uses into the model representing

1 Dataset available at: http://www.isaacgriffith.com/datasets.html.

the software (via a prototype grime injection tool). Once the
injection is complete we measure the metrics a second time. After
all realizations have been processed, we calculate the difference
and record the observations for analysis.

5. ANALYSIS AND DISCUSSION
The results for the simulated injection of the eight types of class
grime into each of the 16 design patterns is depicted in Figure 4.
There is strong evidence that not all grime effects are equal
(F7,127 = 54.58, p < 0.0001). Further evidence is provided in Table
1, where the estimates of the mean change in understandability due
to each grime type are shown. Figure 4, suggests that the grime
types form two distinct groupings, based on the second
classification criteria (scope). In the plot it appears that direct class
grime types (DEPG, DIPG, DESG, and DISG) have a smaller
negative effect on mean pattern understandability than their indirect
counterparts.
We conducted a set of comparisons between each of the categorical
levels of class grime. Table 2 provides the results of these contrasts.
There is strong evidence for a difference between indirect and
direct class grime and internal and external class grime, but there is

Table 1. Mean change in understandability per class grime type.
Effect Estimate t value p value
DEPG -0.74434138 -19.06 <.0001
DESG -0.73430188 -11.52 <.0001
DIPG -0.45006700 -18.80 <.0001
DISG -0.23026344 -5.90 <.0001
IEPG -0.98814313 -25.30 <.0001
IESG -1.15465844 -18.46 <.0001
IIPG -0.72082738 -29.56 <.0001
IISG -0.61929588 -15.86 <.0001

Figure 3. Injection and analysis process.

Percerons Design

Pattern Instances

Metrics

Database

Parser/Metrics

Analysis

Grime

Injector

Parser/Metrics

Analysis

Quality

Analysis

Model Injected

Model

Figure 4. Plot of mean change in understandability across each

type of class grime. Here, understandability is a real number ൒ 0
and the change in understandability can then be any real number.

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
DEPG DIPG DESG DISG IEPG IESG IIPG IISG

Ch
an

ge
 in

 U
nd

er
sta

nd
ab

ili
ty

Distribution of Understandability

only marginal evidence for a difference between single and pair
class grime.
In summary, we have found that class grime as a whole has a
negative effect on design pattern realization understandability. We
can also say that indirect class grime types have a greater negative
effect than direct class grime types. Furthermore, we can also say
that internal has less of a negative effect than external class grime
types on design pattern realization understandability. These results
indicate overall that the identified class grime types should be
considered when modifying design pattern realizations but further
evaluation as to the effects of this form of grime on other quality
aspects is in order. We can infer that the injected grime caused the
reduction in pattern realization understandability, and these results
are generalizable to realizations of the 16 design patterns in the
larger context of open source systems implemented in the JavaTM2
programming language.

6. CONCLUSION AND FUTURE WORK
In this paper we have specified an extended taxonomy of class
grime and conducted a pilot simulation study to evaluate the effect
of class grime on pattern realization understandability, as measured
using the QMOOD quality model. The findings indicate that the
identified forms of class grime negatively impact
understandability; which indicate that these follow the definition of
grime. There is a threat to the construct validity of this study
because classes in patterns may grow as a results of “other”
functionality added to them. Whilst this is grime in the strict sense
of the word (i.e., the definitions provided in Section 3.2), it may not
be perceived as grime from a developer’s point of view because it
was intentional. Lastly, there is a second threat to construct validity
due to the prototype nature of the injection tool. The grime injector
was designed in order to inject grime compliant with the definitions
presented in Section 3.2, but there is currently no separate
validation step that verifies these artifacts are grime.
In future work we intend to use the taxonomy developed in this
study to develop automated detection techniques for class grime in
order to explore the evolution of design pattern realizations, in the
context of class grime. This will then provide a method which can
be expanded to include modular and organizational grime as well.

7. REFERENCES
[1] Ampatzoglou, A., Michou, O., and Stamelos, I. 2012.

Building and mining a repository of design pattern instances:
Practical and research benefits. Entertainment Computing 4,
2 (Apr. 2013), 131-142. DOI=
http://dx.doi.org/10.1016/j.entcom.2012.10.002.

[2] Bansiya, J. and Davis, C.G. 2002. A hierarchical model for
object-oriented design quality assessment. IEEE Trans. Soft.

Eng. 28, 1 (Jan. 2002), 4-17. IEEE-CS, Los Alamitos, CA,
USA. DOI= http://dx.doi.org/10.1109/32.979986.

[3] Bieman, J.M. and Kang, B.K. 1995. Cohesion and reuse in
an object-oriented system. In Proceedings of the ACM

2 http://www.oracle.com/technetwork/java/index.html

Symposium on Software Reusability (Seattle, WA, USA,
April 23 – 30). SSR’94. ACM, New York, NY. 259-262.

[4] Briand, L.C., Daly, J.W., and Wust, J.K. 1998. A unified
framework for cohesion measurement in object-oriented
systems. Empirical Software Engineering 3, 1 (Mar. 1998),
65-117. DOI= http://dx.doi.org/10.1023/A:1009783721306.

[5] Briand, L., Morasca, S., and Basili, V. 1993. Measuring and
assessing maintainability at the end of high level design. In
Proceedings of IEEE Conference on Software Maintenance
(Montreal, Canada, September 27 – 30). CSM’93. IEEE. 88-
87.

[6] Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., and
Mockus, A. 2001. Does code decay? Assessing the evidence
from change management data. IEEE Trans. Soft. Eng. 27, 1
(Jan. 2001), 1-12. IEEE-CS, Los Alamitos, CA, USA. DOI=
http://dx.doi.org/10.1109/32.895984.

[7] France, R.B., Kim D.K., Song, E., and Ghosh S. 2004. A
UML-based pattern specification technique. IEEE Trans.

Soft. Eng, 34, 5, (Mar. 2004), 193-206.
[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994.

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Professional, Boston, MA.
[9] Izurieta, C. 2009. Decay and grime buildup in evolving

object oriented design patterns. Ph.D. Dissertation. Colorado
State University, Fort Collins, CO, USA. Advisor James
Bieman. AAI3385139.

[10] Izurieta, C. and Bieman, J.M. 2007. How software designs
decay: a pilot study of pattern evolution. In Proceedings of

the First International Symposium on Empirical Software

Engineering and Measurement (Madrid, Spain, September
20 - 21, 2007). ESEM 2007. 449-451. DOI=
http://dx.doi.org/10.1109/ESEM.2007.55.

[11] Izurieta, C. and Bieman, J.M. 2008. Testing consequences of
grime buildup in object oriented design patterns. In
Proceedings of the First International Conference on

Software Testing, Verification, and Validation (Lillehammer,
Norway, April 9 – 11, 2008). ICST 2008. 171-179. DOI=
http://dx.doi.org/10.1109/ICST.2008.27.

[12] Izurieta, C. and Bieman, J.M. 2013. A multiple case study of
design pattern decay, grime, and rot in evolving software
systems. Software Quality J. 21, 2 (Jun. 2013), 289-323.
DOI= http://dx.doi.org/10.1007/s11219-012-9175-x.

[13] Izurieta, C., Vetro, A., Zazworka, N., Cai, Y., Seaman, C.,
and Shull, F. Organizing the technical debt landscape. In
Proceedings of the Third International Workshop on

Managing Technical Debt (Zurich, Switzerland, June 1,
2012). MTD 2012. IEEE, 23-26. DOI=
http://dx.doi.org/10.1109/MTD.2012.6225995.

[14] Schanz, T. and Izurieta, C. 2010. Object oriented design
pattern decay: a taxonomy. In Proceedings of the 2010 ACM-

IEEE International Symposium on Emprical Software

Engineering and Measurement (Bolzano-Bozen, Italy,
September 16 – 17, 2010). ESEM 2010. ACM, New York,
NY, 7:1-7:8. DOI=
http://doi.acm.org/10.1145/1852786.1852796.

Table 2. Difference in effects of grime categories on mean change
in understandability.

Effect Estimate t value p value
Direct v. Indirect 1.32395 11.99 <.0001
Single v. Pair -0.16486 -1.49 0.1386
External v. Internal -1.60099 -14.49 <.0001

http://dx.doi.org/10.1016/j.entcom.2012.10.002
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1023/A:1009783721306
http://dx.doi.org/10.1109/32.895984
http://dx.doi.org/10.1109/ESEM.2007.55
http://dx.doi.org/10.1109/ICST.2008.27
http://dx.doi.org/10.1007/s11219-012-9175-x
http://dx.doi.org/10.1109/MTD.2012.6225995
http://doi.acm.org/10.1145/1852786.1852796

	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	3. CLASS GRIME TAXONOMY
	3.1 Class Cohesion
	3.1.1 Strength
	3.1.2 Scope
	3.1.3 Context

	3.2 Grime Categories

	4. PILOT STUDY
	4.1 Methodology
	4.1.1 Systems Studied
	4.1.2 Data Collection0F

	5. ANALYSIS AND DISCUSSION
	6. CONCLUSION AND FUTURE WORK
	7. REFERENCES

