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ABSTRACT 
Software engineering is a continually evolving discipline, wherein 

researchers and members of industry are working towards 

defining and refining what are known as “best practices.” Best 

practices are the set of known correct engineering techniques that 

lead to quality software. 

When a software artifact is produced, it becomes temporally 

locked into a single instantiation of these best practices at a given 

point in time. If such software is not maintained in such a way as 

to keep it current with the evolution of practice, then there is a 

good chance that subsequent engineers may not understand the 

design choices made. There are known techniques, called 

refactorings, which allow for structural changes to software 

without altering the outward appearance and behavior, thus 

maintaining the intent of the original design. Unfortunately, 

refactoring requires an engineer to both understand the techniques 

to be applied and the code to which they are applied to. This is not 

always feasible.  

We have developed an automated system utilizing Evolutionary 

Algorithms to manipulate refactorings correctly without requiring 

an underlying understanding of the software. This then allows for 

sustained levels of quality of evolving software systems. The 

understandability, maintainability, and reusability of the software 

regenerate as best practices evolve. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 

computer-aided software engineering (CASE).  

D.2.7 [Software Engineering]: Distribution, Maintenance, and 

Enhancement – restructuring, reverse engineering, and 

reengineering. 

I.2.2 [Artificial Intelligence]: Automatic Programming – 

program modification  

General Terms 
Measurement, Design, Experimentation 

Keywords 
refactoring; automation; software engineering; code smell; 

software evolution; measurement 

1.  INTRODUCTION 

Many legacy software artifacts, software systems developed 

prior to the adoption of UML, can benefit from refactoring. Yet, 

problems are encountered when current developers are required to 

maintain and update legacy systems. This usually occurs as a 

result of original developers no longer being available for 

maintenance or to field reference questions about the system. A 

disconnect between current and original engineers develops from 

the constant imperative to improve software engineering practices 

[22] and is reflected throughout versions of the evolving software 

design. Given such disconnects, the original intention and 

design choices made in legacy software systems may be 

unrecoverable (in a practical amount of time) by current 

engineers.  

Software maintenance by developers lacking the understanding 

of the best practices under which the software was developed, or 

being confronted with a system which exhibits low 

understandability and maintainability due to poor quality, leads to 

a large amount of time wasted trying to understand how to 

integrate and implement new features. We currently have 

techniques which can be utilized to modernize the code to bring 

the system up to current best practices —these techniques are 

refactorings; which are designed to improve the quality of the 

software [12]. The quality of the software we are concerned with 

is directly related to the understandability and maintainability of 

the system. Thus, we have designed a system which provides 

automated refactoring of a system and focuses on removing code 

smells while simultaneously improving code metrics known to be 

linked to the qualities of concern. 

The majority of time spent on a project occurs during the 

maintenance portion of the life cycle [23]. The system proposed 

herein aims to significantly reduce this portion of the 

development life cycle, which would lead to substantial time and 

financial savings. Analysis and enhancement of the 

architecture/design of a software system is achieved through the 

systematic application of structural refactorings, in order to 

enhance and illuminate the intension of the underlying design. 

This process is first initiated through the extraction of the design 

 



from the code level into the refactoring space of the system we 

have developed. 

This paper is organized as follows: A summary and 

comparison of related work can be found in Section II. 

Underlying theory and concepts are described in Section III. 

System design, component subsystems, and data flow diagrams 

are provided in Section IV. Our methodology is explained in 

section V. Results of each experimental group and discussion of 

results are provided in Sections VI and VII, respectively. In 

Section VIII we describe threats to the validity of this work and 

the potential solutions to threats. Section IX provides concluding 

remarks and a discussion of ensuing future work. 

2. RELATED WORK 

Refactoring has presented itself as a means by which 

developers can evolve a software system in order to improve 

overall quality. Refactoring is an intense and time-consuming 

process which requires that developers understand both how and 

when to use the techniques. It also requires that they understand 

the underlying code. This can be seen in the widely available 

semi-automatic refactoring tools which now adorn most IDE's 

(e.g., Eclipse IDE, Netbeans, IntelliJ, etc.) [3].  

Automated refactoring generally falls into the category of 

Search Based Software Engineering (SBSE) [19]. The sub-

problem of refactoring in SBSE helps address disharmonies found 

in many applications. These disharmonies, found in legacy 

systems in the form of module clusters, are addressed by Kastener 

et al. by refactoring them into feature modules [15]. Perez and 

Crespo [22] use of graph transformations as a means of describing 

refactorings was presented as an approach to perform code 

comparisons when refactoring has been used. O’Keefe and Ó 

Cinnéide [19], [20] conducted an empirical survey detailing the 

utilization of search based optimization algorithms to refactor a 

software system while optimizing a set of metrics (used to 

measure the improvement of quality in the system). A detailed 

description of refactoring and search based optimization can be 

found in their survey [19].  

Other approaches involving genetic algorithms and software 

quality assessment have been recently introduced. First is the 

work of Shimomura, Ikeda, and Takahashi [26] which focused on 

the recommendation of refactorings by measuring the overall 

quality of a codebase using a genetic algorithm. Another approach 

attempting to remove known duplicate code code smells was the 

work of Zibran and Roy [27] whose main goal was to solve the 

constrain problem associated with scheduling the removal of this 

code smell by applying a constraint programming approach. 

Another approach was the use of automated refactoring to 

enhance the ability of a Genetic Programming algorithm to 

generate code that solve much larger problems, as proposed by 

Otero, Johnson, Freitas, and Thompson [21].  

Along with refactoring, Fowler [12] describes a set of code 

smells to indicate when refactoring is needed. A large amount of 

work has also been conducted by both Munro [18] and Roperia 

[24] in the area of automated code smell detection. Munro 

proposed a means to quantitatively assess whether source code 

exhibited traces of known code smells using standard object 

oriented metrics, such as depth of inheritance tree (DIT), Lines of 

Code (LOC), etc. [24]. 

The novelty of our approach is the combination of the code 

smell detection algorithms and the search based approach for 

refactoring. Up to this point this approach, to the best of the 

authors’, knowledge has not been tried. This approach is meant to 

address the need to fully understand the code that needs to be 

refactored. The context in which this becomes a problem is as 

follows: In the development of legacy systems, developer 

turnover is inevitable over the lifetime of the software, yet new 

features and code maintenance must still be performed. Coupled 

to this, are the ever changing best practices in software 

engineering. Keeping up with best practices maintains a team's 

understanding of the source code because, in general, the 

modularity of the software is maintained through refactorings. 

The overall quality of the source code in a production 

environment is therefore maintained. In our research, this is 

accomplished by utilizing code smell detection algorithms to first 

detect code smells, and then produce a set of viable refactorings 

which eliminate the code smells. The techniques we use reduce 

the search space of the source code to areas which are in need of 

refactoring (code smells). This effectively reduces the scope of the 

search space to a limited set of known refactorings. The problem 

then becomes finding the optimal order in which to apply the 

refactorings. 

3. BACKGROUND 

This research is based on three major concepts: the 

relationship between code smells and refactoring, the theory and 

application of genetic algorithms, and the application of software 

engineering product metrics. 

3.1 Code Smells and Refactoring 
Refactoring is the incremental redesign of a software artifact. 

After a process of applying various refactorings in sequence, the 
refactored code will better conform to agreed upon solutions of 
software engineering best practices [12] whilst maintaining 
identical functionality. For example, let’s say that an inheritance 
hierarchy exists within the codebase and that the top-level class 
defines some abstract method operation(). After inspection of the 
code we find that several of the classes (or all of them) implement 
this method in the same way. What could be done here is that the 
implementation could be moved up into the parent class and 
overridden in the classes that implement the method a different 
way. This is an example of the Pull Up Method refactoring. All this 
has done is to remove redundancy in the code while 
simultaneously exploiting the principles of OOP to better the 
structure of the underlying design.  

Alterations specified by a refactoring are designed in such a 
way that if applied correctly they will not alter the observable 
effects of the program. Thus, given a unit test designed for the 
original legacy code, refactored code should still pass the unit 
test.  

Code smells are described by Fowler and Beck [12] as a set 
of qualitative notions that help indicate when a refactoring is 
necessary or when to stop refactoring. Code Smells were 
intentionally designed to not be a heuristic or metric of any sort. 
Instead, they are meant as a means of inspiration to be coupled 
with human intuition [12] and are apt for subjective interpretation. 
Regardless, code smells provide an indication of where and when 
refactoring is most needed [12], and since algorithms [18] [24] 
have been designed to detect code smells, we have decided to 
utilize these to reduce the refactoring search space.  

3.2 Genetic Algorithms 
Genetic Algorithms (GAs) are an iterative approach which is 

described as analogous to evolutionary processes for solving 

search problems [1]. The GA generates a population of potential 

answers to a problem and measure the fitness (survival ability) of 

each solution to solve the problem. In order to apply a GA 

approach, the solution space must be decomposed into smaller 



sub-problems which can subsequently be combined into an 

overall solution. We restrict the search to the best solutions found 

so far and combine them to create a population with higher fitness 

[25]. During the search, intermediate solutions are represented as 

strings of binary values or alleles, where each value represents the 

presence or absence of a trait. Through operations like crossover 

and mutation [1], we can progressively generate strings (new 

intermediate solutions) with higher fitness levels. Intermediate 

solutions are re-integrated into the existing population until some 

pre-determined stopping criteria (i.e., number of iterations or 

fitness level) is met. The basic algorithm pseudo code is described 

in Figure 1. 

The initialPopulation() function takes a maximum size 

parameter used to generate a population of random individuals 

with varying levels of fitness. The evalFitness() function takes the 

population of individuals and evaluates their ability to solve the 

problem using a predefined fitness function. During iteration, the 

select() function is used to select the individuals, meeting some 

criteria, from the population in order to generate the next 

generation. The selected individuals are then paired off for 

crossover. The crossover() function selects a random pivot point in 

a pair of individuals (between alleles) and swaps the alleles after 

this point, thus generating new offspring. Offspring and parents 

alike fight for survival during the next iteration.  

The mutate() function examines each new member of the 

population and determines whether or not a mutation will occur. 

Mutations decrease the chances of getting stuck in a local 

minimum or maximum of the search space. When a mutation 

occurs, a randomly selected allele is modified to produce a new 

individual which replaces the previous individual [25]. 

3.3 Product Metrics  

Product metrics [11] serve as surrogates to help assess the 

quality of software. External quality attributes include reusability, 

understandability, maintainability, testability and reliability [23] 

among others. Li and Henry [17] introduced a core set of object 

oriented metrics (CK suite) that we use as surrogates for quality 

and to help direct the direction of the GA search for finding better 

refactoring solutions. The CK suite of metrics includes: Depth of 

Inheritance Tree (DIT), Weighted Methods per Class (WMC), 

Lack of Cohesion of Methods (LCOM), Coupling Between 

Objects (CBO), Number of Children (NOC), and Request For 

Class (RFC). See Li and Henry [17] for detailed descriptions of 

each metric. 

4. SYSTEM DESIGN  
This system has been designed to utilize measurements 

of selected object oriented metrics (as described in section 

II) to detect code smells and to influence the direction of 

the search space by a GA in order to refactor sections of 

legacy software. The system is broken into three major 

sections: 1) input processing, described in subsection A, 

which spans source code parsing and initial code graph 

generation, 2) the refactoring subsystem, described in 

subsections B, C, D, and E, which encompasses the GA 

and is responsible for gathering measurements described 

by selected metrics to identify potential code smells, and 

3), the output subsystem, described in subsection F, which 

is responsible for combining the final code graph from the 

refactoring subsystem with the Eclipse Modeling 

Framework (EMF) [28] to generate refactored Unified 

Model Language (UML) [30] class diagrams. Figure 2 

shows the Data Flow Diagram (DFD) of the system as 

well as a mapping from each section of the DFD to their 

corresponding descriptions (provided below). In the 

following sub-sections we provide detailed descriptions of 

each component of the refactoring system.  

procedure GeneticAlgorithm()  

define: population (a list of  

  individuals), 

begin 

  population = initialPopulation(size) 

  evalFitness(population) 

 

  do 

    parents = select(population) 

    children = crossover(parents)     

    mutate(children) 

    evalFitness(children) 

    population = combine(parents,  

children) 

  until(stoppingCondition) 

end proc GeneticAlgorithm 

Figure 1. Pseudocode for a general genetic algorithm [1] 

 

Figure 2. Overall Approach Data Flow Diagram [14] 



4.1 Generation of the Control Flow Graph 
We use JavaCC [29] to produce a Java language parser that 

generates a parse tree. The parse tree is then converted into a 

Control Flow Graph (CFG) representation of the source code. 

Although we currently only support Java, the system has been 

designed using the Builder Pattern [13] to allow for the swapping 

of parsers as well as including new languages.   

We use CFGs which provide an ideal structure that captures 

the necessary information to facilitate the operations involved in 

refactoring, metrics analysis, and code smell measurements. Each 

CFG can contain multiples of the following Node types: 

PackageNodes, ClassNodes, MethodNodes, AttributeNodes, and 

StatementNodes. The names of the nodes are self-descriptive; 

however, we note that StatementNodes are contained within a 

separate graph in each MethodNode object.  We also define 

multiple edge types. Edge types represent different association 

types or intra-class connections. Finally, in order to ensure that 

source code information is not lost after the parse tree is 

disposed of, the CFG maintains all its references to the nodes and 

edges of the graph.  

4.2 Implementation of the Refactoring Engine 
The Refactoring subsystem controls access to the original 

CFG, provides a gateway between the GA and the Metrics 

subsystem, and generates a final modified CFG to the Output 

component. The refactoring subsystem was designed using a 

combination of the Model-View-Controller (MVC) Pattern [6] 

and a combined Strategy and Command Pattern [13]. The MVC 

pattern ensures that the correct view of the CFG is supplied to 

the Refactoring subsystem, the Code Smell subsystem, and the 

Output subsystem. The Strategy and Command pattern 

combination ensures extensibility and the dynamic swap ability 

of the GA. 

Refactorings were selected after investigating current best 

practices to mitigate code smells [12]. For this project we have 

selected Encapsulate Field, Inline Class, Move Field, Move 

Method, Pull-Up Field, Pull-Up Method, Push-Down Field, Push-

Down Method, and Self-Encapsulate Field [14] and have 

implemented them according to the descriptions provided by 

Fowler in [12].  

The Refactorings are used after an individual (representing a 

member of the population in the current iteration of the search) is 

generated by the GA, but prior to assessing the fitness of that 

individual [14]. The refactored CFG is then passed to the metrics 

measurement subsystem and code smell detection subsystem to 

evaluate the individual’s fitness [14]. A favorable evaluation of 

the individual allows its survival in the next generation of the 

population. 

4.3 Code Smell Detection and Measurement 
Code smells represent poorly engineered code. Using metrics 

to quantify code smells [18]; we can determine how well a legacy 

system is being maintained and aid the GA with refactoring 

procedures that improve the fitness and hence the 

comprehensibility of the overall code in the system. Once the 

initial CFG has been generated by the Input subsystem, it is 

passed by the System Controller to the Refactoring Controller and 

eventually into the Refactoring subsystem. The Refactoring 

subsystem then starts the GA which performs the initial 

measurements of all metrics across the CFG as well as 

performing an initial code smell estimate.  When the genetic 

algorithm reaches a certain code smell threshold level,  it passes 

processing control back to the Refactoring Controller. 

The implementation of code smell analysis is based on the 

work of Munro [18] and Roperia [24]. They suggest several 

algorithms to aid in finding classes that may exhibit potential 

code smells such as “Lazy Class” and “Temporary Field”. We 

have selected to implement detection algorithms for the Lazy 

Class (LYCL), Temporary Field (TMPF), Long Method (LNGM), 

Large Class (LGCL), and Shotgun Surgery (SHOSUR) code 

smells. Each algorithm has been modified to detect code smells 

across an entire code base and return a count of code smells 

detected. This is accomplished through the utilization of the code 

smell analysis algorithms during the initialization of the GA 

(during initial fitness measurements across the CFG). 

Code smell detection is used to generate the list of refactoring 

chains. Upon initial measurement of each code smell, if one is 

found, a decision algorithm is invoked which will lead to the 

generation of a sequence of refactorings which can potentially 

remove the found code smell. The decision algorithm determines 

if the refactoring can be performed, and which other refactorings 

must be present in the refactoring chain to ensure that the present 

refactoring’s preconditions will be met. Each decision algorithm 

is based on the prerequisite information for the implemented 

refactorings as found in Fowler’s description of each refactoring 

[12]. These refactoring chains are placed into a list from which 

they are randomly selected during the creation or mutation of 

individuals by the GA. 

4.4 Use of Empirical Metrics and Measures 
When refactorings are identified as candidates to be applied to 

a CFG, the genetic algorithm first creates a clone of the CFG and 

then applies each refactoring in sequential order to the CFG clone. 

The genetic algorithm then calculates the values of each metric in 

the CFG clone and combines their value to generate a fitness level 

for the clone. Li and Henry [17] describe all the metrics used by 

our implementation of the GA, the means by which they are 

evaluated, and the quality attributes for which they serve as 

surrogates. 

4.5 Genetic Algorithm 
The GA is used to automate the refactoring(s) of legacy 

source code. Each GA individual represents a sequence of 

refactoring chains to be applied to a CFG. Each refactoring chain 

is a sequence of refactorings, where each refactoring is dependent 

on the sequence of refactorings that are before it in the sequence, 

and the final refactoring is the actual refactoring required to be 

performed. Each refactoring is implemented by a corresponding 

RefactoringCommand.  

The GA is designed to use two operators to affect the 

generation of a new population: mutate and crossover. The mutate 

operator randomly selects a new refactoring chain from the list of 

remaining refactoring chains and swaps it with a randomly 

selected position in an individual. Currently the mutation 

probability is set to 10%. Crossover is defined to be the random 

selection of a point in two individuals where the contents between 

them after that point are swapped, thus forming two new 

individuals. Due to the potential for invalid refactoring chains to 

be generated, the crossover operation has been amended to 

include the ability to crossover different sized individuals. In 

order to achieve this, a normalization process is applied to the 

lengths of individuals, where the crossover point becomes a ratio 

of the length of each individual. If an invalid condition is detected 

during the processing of a refactoring (such as preconditions not 

met or missing input) the refactoring is not applied to the CFG 

and processing continues on the next refactoring. 



When the individuals of a population are recombined to form a 

new population, we select the best member of the population, 

where the best member is the individual with the highest fitness 

value. The selected individual’s sequence of refactorings is 

applied to the current CFG and the resulting CFG’s code smell is 

evaluated. 

4.6 Generation of Output 
Once the refactoring subsystem has completed its tasks and 

generated the final CFG with the highest fitness level, it passes 

the CFG to the SystemController component, which invokes the 

OutputDirector component to generate output. Currently,  the 

output subsystem only generates structural UML class diagrams; 

however, given the amount of information contained in the 

CFG, we plan to enhance the output to include source code and 

UML sequence diagrams. We utilized the Eclipse Modeling 

Framework (EMF) [28] to provide the UML generation 

functionality. 

5. METHODOLOGY 
We elected to develop a small test program as the experimental 

subject in which to run all experiments [14]. The development of 

a test program has allowed us to provide a simple but easily 

extensible platform into which multiple types of code smells can 

be introduced with minimal work [14]. The benefit of utilizing our 

own experimental subject is that we can run various experiments 

across the system and maintain full control of it without the 

possibility of having multiple developers introduce changes [14]. 

Experimental subjects were allocated to separate groups. Each 

group was comprised of the original system and clones of the 

original code injected with known code smells [14]. Each group in 

the experiment was injected with different code smells, while 

leaving the third group as a control group [14]. Experiments were 

constructed to use the genetic algorithm to generate solutions that 

actively remove code smells while maintaining the functionality 

of the subjects.  

6. RESULTS 
The graphs in figures 4 through 15 display results from the 

both experimental group and the control group. The dependent 

variables for the experiment are the code smells and the CK-suite 

of metrics. Code smells detected include: Lazy Class (LYCL), 

Long Method (LNGM), Large Class (LGCL), Shotgun Surgery 

(SHOSUR), and Temporary Field (TMPF) and are depicted in 

Figures 3, 4, 7, 8, 11,  and 12. Metrics include: Coupling Between 

Objects (CBO), Lack of Cohesion in Object Methods (LCOM), 

Weighted Methods per Class (WMC), Class Size (CS), Depth of 

Inheritance Tree (DIT), Response for Class (RFC), and Number 

of Children (NOC) and are depicted in Figures 5, 6, 9, 10, 13, and 

14. 

6.1 Group 1 Results 

 

 

 

 

 

Figure 3. Code smell counts from the fittest individual of a 

population after every iteration of the genetic algorithm 

[14] 

 

 

Figure 4. Comparison between smell counts before and 

after the genetic algorithm processes the source code 

[14] 

 

Figure 5. Average CK-metric values of the subject’s 

codebase after every iteration of the genetic 

algorithm [14] 



 

6.2 Group 2 Results 

 

 

 

6.3 Control Results 

 

 

Figure 6. Comparison of initial and final metric 

measurements after the genetic algorithm processes 

the source code [14] 

 

Figure 7. Code smell counts from the fittest individual of 

a population after every iteration of the genetic 

algorithm 

 

Figure 8. Comparison between smell counts before and 

after the genetic algorithm processes the source 

code 

 

Figure 9. Average CK-metric values of the subject’s 

codebase after every iteration of the genetic 

algorithm 

 

Figure 10. Comparison of initial and final metric 

measurements after the genetic algorithm processes 

the source code 

 

Figure 11. Code smell counts from the fittest individual of 

a population after every iteration of the genetic 

algorithm 



 

 

 

7. DISCUSSION AND ANALYSIS 
A number of interesting observations can be made from our 

results. First, when comparing the total smell counts (shown in 

Figures 3, 7, and 11) with the total codebase average metric 

counts (Figures 5, 9, and 13) for all three groups, we observe an 

interesting trend. As the current iteration of the GA increases, 

both code smell counts (for the fittest individual) and the 

measured metrics shows a downward trend. Thus by minimizing 

total remaining code smells we are effectively minimizing total 

measured metrics as well. This result is also reflected in the 

comparisons between initial and final measurements for both code 

smell and metrics for both groups. This is depicted in Figures 4, 6, 

8, 10, 12 and 14. 

Although, the CFG maintains all the information needed to 

accurately generate the UML diagram with information such as 

accessibility, methods parameters, etc., the EMF does not easily 

display all this information. Currently we are researching other 

libraries with better representation and display capabilities. 

Additionally, we have found that when certain refactorings are 

automated placeholders are required to represent new fields, 

methods, or classes 

8. THREATS TO VALIDITY 
We examine four different types of threats to validity: 

construct validity, content validity, internal validity, and external 

validity [2], [7], [8]. 

Construct validity refers to the meaningfulness of 

measurements and the quality choices made about independent 

and dependent variables. One must show that the measurements 

are consistent with an empirical relation system [11]. The 

dependent variables under consideration are the code smell counts 

and the values of all the metrics, as measured each iteration. The 

set of CK-metric measurements and measured code smells serve 

as surrogates that are clearly related to the comprehensibility 

aspects of quality. The former represents maintainability, 

reusability, understandability, testability, and reliability attributes 

of a system [23], while code smell counts, if viewed as indicators 

for new refactorings, can be attributed to increases in 

maintainability and extensibility [16]. Our results are clearly 

consistent with a real world observation of an empirical relation 

system.  

The results also show a lack of variability in dependent 

variables. This allows us to clearly see trends in the results 

without concerns that may obscure the relationships between 

dependent and independent variables. In order to strengthen the 

construct validity of this study, additional code smells that guide 

the GA search should be added. Further, smarter crossover and 

mutation techniques could also enrich the search for better 

refactorings. 

To have content validity, our choice of code smells and metrics 

must capture the notion of quality we are trying to improve ‒ 

comprehensibility of source code.  Our choice of metrics was 

sufficient to make increases in the comprehensibility of source 

code. But, in order to strengthen the content validity of this 

research and to validate the metrics selected as surrogates for 

quality, we should recruit software engineers of varying skill 

levels and use qualitative techniques to examine refactored code 

and compare its comprehensibility with the original source code. 

This could be done at both the design and implementation levels. 

Internal validity refers to cause and effect relationships 

between independent and dependent variables. The independent 

variable in this study is the current iteration of the GA. Here both 

dependent variables are confounding, but additional metrics are 

necessary in order to fully investigate the relationship between 

them. 

External Validity refers to the ability to generalize results. 

Currently the GA is utilizing refactoring sequences dependent 

upon initial code smell measurements. In order to strengthen the 

external validity, we need to investigate the use of this procedure 

on larger real world systems. Generalization of results in case 

studies is generally a difficult problem and one cannot infer 

similar results would be obtained from different types of systems 

that could span several domains. 

9. CONCLUSION AND FUTURE WORK 
Using surrogate measures that capture the notion of 

comprehensibility (maintainability, understandability, reusability 

 

Figure 12. Comparison between smell counts before and 

after the genetic algorithm processes the source 

code 

 

Figure 13. Average CK-metric values of the subject’s 

codebase after every iteration of the genetic 

algorithm 

 

Figure 14.  Comparison of initial and final metric 

measurements after the genetic algorithm processes 

the source code 



and testability), the GA performed satisfactorily and was able to 

successfully reduce the overall total smell counts found in source 

code using a suite of metrics and code smell decision algorithms 

selected to reduce the search space of adequate refactorings. As to 

whether this truly increases codebase comprehensibility, we 

cannot say. What we need is a user study which is left to future 

research. 

Whilst results show that automated refactoring is indeed viable 

and results are very encouraging, comprehensibility enhancements 

can benefit from further automated and manual processes [14]. 

Thus, a hybrid approach where automated refactorings help with 

initial structural changes coupled with expert manual intervention 

is the most likely approach that would yield finer results. Thus, 

this is not an attempt to take the human out of the loop, but 

instead to ease the burden on the human in the first place. 
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