
Evolution of Legacy System Comprehensibility through
Automated Refactoring

Isaac Griffith, Scott Wahl, Clemente Izurieta
Computer Science Department

357 EPS Building
Montana State University

Bozeman, MT 59717

{isaac.griffith, scott.wahl}@msu.montana.edu
clemente.izurieta@cs.montana.edu

ABSTRACT
Software engineering is a continually evolving discipline, wherein

researchers and members of industry are working towards

defining and refining what are known as “best practices.” Best

practices are the set of known correct engineering techniques that

lead to quality software.

When a software artifact is produced, it becomes temporally

locked into a single instantiation of these best practices at a given

point in time. If such software is not maintained in such a way as

to keep it current with the evolution of practice, then there is a

good chance that subsequent engineers may not understand the

design choices made. There are known techniques, called

refactorings, which allow for structural changes to software

without altering the outward appearance and behavior, thus

maintaining the intent of the original design. Unfortunately,

refactoring requires an engineer to both understand the techniques

to be applied and the code to which they are applied to. This is not

always feasible.

We have developed an automated system utilizing Evolutionary

Algorithms to manipulate refactorings correctly without requiring

an underlying understanding of the software. This then allows for

sustained levels of quality of evolving software systems. The

understandability, maintainability, and reusability of the software

regenerate as best practices evolve.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –

computer-aided software engineering (CASE).

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – restructuring, reverse engineering, and

reengineering.

I.2.2 [Artificial Intelligence]: Automatic Programming –

program modification

General Terms
Measurement, Design, Experimentation

Keywords
refactoring; automation; software engineering; code smell;

software evolution; measurement

1. INTRODUCTION

Many legacy software artifacts, software systems developed

prior to the adoption of UML, can benefit from refactoring. Yet,

problems are encountered when current developers are required to

maintain and update legacy systems. This usually occurs as a

result of original developers no longer being available for

maintenance or to field reference questions about the system. A

disconnect between current and original engineers develops from

the constant imperative to improve software engineering practices

[22] and is reflected throughout versions of the evolving software

design. Given such disconnects, the original intention and

design choices made in legacy software systems may be

unrecoverable (in a practical amount of time) by current

engineers.

Software maintenance by developers lacking the understanding

of the best practices under which the software was developed, or

being confronted with a system which exhibits low

understandability and maintainability due to poor quality, leads to

a large amount of time wasted trying to understand how to

integrate and implement new features. We currently have

techniques which can be utilized to modernize the code to bring

the system up to current best practices —these techniques are

refactorings; which are designed to improve the quality of the

software [12]. The quality of the software we are concerned with

is directly related to the understandability and maintainability of

the system. Thus, we have designed a system which provides

automated refactoring of a system and focuses on removing code

smells while simultaneously improving code metrics known to be

linked to the qualities of concern.

The majority of time spent on a project occurs during the

maintenance portion of the life cycle [23]. The system proposed

herein aims to significantly reduce this portion of the

development life cycle, which would lead to substantial time and

financial savings. Analysis and enhancement of the

architecture/design of a software system is achieved through the

systematic application of structural refactorings, in order to

enhance and illuminate the intension of the underlying design.

This process is first initiated through the extraction of the design

from the code level into the refactoring space of the system we

have developed.

This paper is organized as follows: A summary and

comparison of related work can be found in Section II.

Underlying theory and concepts are described in Section III.

System design, component subsystems, and data flow diagrams

are provided in Section IV. Our methodology is explained in

section V. Results of each experimental group and discussion of

results are provided in Sections VI and VII, respectively. In

Section VIII we describe threats to the validity of this work and

the potential solutions to threats. Section IX provides concluding

remarks and a discussion of ensuing future work.

2. RELATED WORK

Refactoring has presented itself as a means by which

developers can evolve a software system in order to improve

overall quality. Refactoring is an intense and time-consuming

process which requires that developers understand both how and

when to use the techniques. It also requires that they understand

the underlying code. This can be seen in the widely available

semi-automatic refactoring tools which now adorn most IDE's

(e.g., Eclipse IDE, Netbeans, IntelliJ, etc.) [3].

Automated refactoring generally falls into the category of

Search Based Software Engineering (SBSE) [19]. The sub-

problem of refactoring in SBSE helps address disharmonies found

in many applications. These disharmonies, found in legacy

systems in the form of module clusters, are addressed by Kastener

et al. by refactoring them into feature modules [15]. Perez and

Crespo [22] use of graph transformations as a means of describing

refactorings was presented as an approach to perform code

comparisons when refactoring has been used. O’Keefe and Ó

Cinnéide [19], [20] conducted an empirical survey detailing the

utilization of search based optimization algorithms to refactor a

software system while optimizing a set of metrics (used to

measure the improvement of quality in the system). A detailed

description of refactoring and search based optimization can be

found in their survey [19].

Other approaches involving genetic algorithms and software

quality assessment have been recently introduced. First is the

work of Shimomura, Ikeda, and Takahashi [26] which focused on

the recommendation of refactorings by measuring the overall

quality of a codebase using a genetic algorithm. Another approach

attempting to remove known duplicate code code smells was the

work of Zibran and Roy [27] whose main goal was to solve the

constrain problem associated with scheduling the removal of this

code smell by applying a constraint programming approach.

Another approach was the use of automated refactoring to

enhance the ability of a Genetic Programming algorithm to

generate code that solve much larger problems, as proposed by

Otero, Johnson, Freitas, and Thompson [21].

Along with refactoring, Fowler [12] describes a set of code

smells to indicate when refactoring is needed. A large amount of

work has also been conducted by both Munro [18] and Roperia

[24] in the area of automated code smell detection. Munro

proposed a means to quantitatively assess whether source code

exhibited traces of known code smells using standard object

oriented metrics, such as depth of inheritance tree (DIT), Lines of

Code (LOC), etc. [24].

The novelty of our approach is the combination of the code

smell detection algorithms and the search based approach for

refactoring. Up to this point this approach, to the best of the

authors’, knowledge has not been tried. This approach is meant to

address the need to fully understand the code that needs to be

refactored. The context in which this becomes a problem is as

follows: In the development of legacy systems, developer

turnover is inevitable over the lifetime of the software, yet new

features and code maintenance must still be performed. Coupled

to this, are the ever changing best practices in software

engineering. Keeping up with best practices maintains a team's

understanding of the source code because, in general, the

modularity of the software is maintained through refactorings.

The overall quality of the source code in a production

environment is therefore maintained. In our research, this is

accomplished by utilizing code smell detection algorithms to first

detect code smells, and then produce a set of viable refactorings

which eliminate the code smells. The techniques we use reduce

the search space of the source code to areas which are in need of

refactoring (code smells). This effectively reduces the scope of the

search space to a limited set of known refactorings. The problem

then becomes finding the optimal order in which to apply the

refactorings.

3. BACKGROUND

This research is based on three major concepts: the

relationship between code smells and refactoring, the theory and

application of genetic algorithms, and the application of software

engineering product metrics.

3.1 Code Smells and Refactoring
Refactoring is the incremental redesign of a software artifact.

After a process of applying various refactorings in sequence, the
refactored code will better conform to agreed upon solutions of
software engineering best practices [12] whilst maintaining
identical functionality. For example, let’s say that an inheritance
hierarchy exists within the codebase and that the top-level class
defines some abstract method operation(). After inspection of the
code we find that several of the classes (or all of them) implement
this method in the same way. What could be done here is that the
implementation could be moved up into the parent class and
overridden in the classes that implement the method a different
way. This is an example of the Pull Up Method refactoring. All this
has done is to remove redundancy in the code while
simultaneously exploiting the principles of OOP to better the
structure of the underlying design.

Alterations specified by a refactoring are designed in such a
way that if applied correctly they will not alter the observable
effects of the program. Thus, given a unit test designed for the
original legacy code, refactored code should still pass the unit
test.

Code smells are described by Fowler and Beck [12] as a set
of qualitative notions that help indicate when a refactoring is
necessary or when to stop refactoring. Code Smells were
intentionally designed to not be a heuristic or metric of any sort.
Instead, they are meant as a means of inspiration to be coupled
with human intuition [12] and are apt for subjective interpretation.
Regardless, code smells provide an indication of where and when
refactoring is most needed [12], and since algorithms [18] [24]
have been designed to detect code smells, we have decided to
utilize these to reduce the refactoring search space.

3.2 Genetic Algorithms
Genetic Algorithms (GAs) are an iterative approach which is

described as analogous to evolutionary processes for solving

search problems [1]. The GA generates a population of potential

answers to a problem and measure the fitness (survival ability) of

each solution to solve the problem. In order to apply a GA

approach, the solution space must be decomposed into smaller

sub-problems which can subsequently be combined into an

overall solution. We restrict the search to the best solutions found

so far and combine them to create a population with higher fitness

[25]. During the search, intermediate solutions are represented as

strings of binary values or alleles, where each value represents the

presence or absence of a trait. Through operations like crossover

and mutation [1], we can progressively generate strings (new

intermediate solutions) with higher fitness levels. Intermediate

solutions are re-integrated into the existing population until some

pre-determined stopping criteria (i.e., number of iterations or

fitness level) is met. The basic algorithm pseudo code is described

in Figure 1.

The initialPopulation() function takes a maximum size

parameter used to generate a population of random individuals

with varying levels of fitness. The evalFitness() function takes the

population of individuals and evaluates their ability to solve the

problem using a predefined fitness function. During iteration, the

select() function is used to select the individuals, meeting some

criteria, from the population in order to generate the next

generation. The selected individuals are then paired off for

crossover. The crossover() function selects a random pivot point in

a pair of individuals (between alleles) and swaps the alleles after

this point, thus generating new offspring. Offspring and parents

alike fight for survival during the next iteration.

The mutate() function examines each new member of the

population and determines whether or not a mutation will occur.

Mutations decrease the chances of getting stuck in a local

minimum or maximum of the search space. When a mutation

occurs, a randomly selected allele is modified to produce a new

individual which replaces the previous individual [25].

3.3 Product Metrics

Product metrics [11] serve as surrogates to help assess the

quality of software. External quality attributes include reusability,

understandability, maintainability, testability and reliability [23]

among others. Li and Henry [17] introduced a core set of object

oriented metrics (CK suite) that we use as surrogates for quality

and to help direct the direction of the GA search for finding better

refactoring solutions. The CK suite of metrics includes: Depth of

Inheritance Tree (DIT), Weighted Methods per Class (WMC),

Lack of Cohesion of Methods (LCOM), Coupling Between

Objects (CBO), Number of Children (NOC), and Request For

Class (RFC). See Li and Henry [17] for detailed descriptions of

each metric.

4. SYSTEM DESIGN
This system has been designed to utilize measurements

of selected object oriented metrics (as described in section

II) to detect code smells and to influence the direction of

the search space by a GA in order to refactor sections of

legacy software. The system is broken into three major

sections: 1) input processing, described in subsection A,

which spans source code parsing and initial code graph

generation, 2) the refactoring subsystem, described in

subsections B, C, D, and E, which encompasses the GA

and is responsible for gathering measurements described

by selected metrics to identify potential code smells, and

3), the output subsystem, described in subsection F, which

is responsible for combining the final code graph from the

refactoring subsystem with the Eclipse Modeling

Framework (EMF) [28] to generate refactored Unified

Model Language (UML) [30] class diagrams. Figure 2

shows the Data Flow Diagram (DFD) of the system as

well as a mapping from each section of the DFD to their

corresponding descriptions (provided below). In the

following sub-sections we provide detailed descriptions of

each component of the refactoring system.

procedure GeneticAlgorithm()

define: population (a list of

 individuals),

begin

 population = initialPopulation(size)

 evalFitness(population)

 do

 parents = select(population)

 children = crossover(parents)

 mutate(children)

 evalFitness(children)

 population = combine(parents,

children)

 until(stoppingCondition)

end proc GeneticAlgorithm

Figure 1. Pseudocode for a general genetic algorithm [1]

Figure 2. Overall Approach Data Flow Diagram [14]

4.1 Generation of the Control Flow Graph
We use JavaCC [29] to produce a Java language parser that

generates a parse tree. The parse tree is then converted into a

Control Flow Graph (CFG) representation of the source code.

Although we currently only support Java, the system has been

designed using the Builder Pattern [13] to allow for the swapping

of parsers as well as including new languages.

We use CFGs which provide an ideal structure that captures

the necessary information to facilitate the operations involved in

refactoring, metrics analysis, and code smell measurements. Each

CFG can contain multiples of the following Node types:

PackageNodes, ClassNodes, MethodNodes, AttributeNodes, and

StatementNodes. The names of the nodes are self-descriptive;

however, we note that StatementNodes are contained within a

separate graph in each MethodNode object. We also define

multiple edge types. Edge types represent different association

types or intra-class connections. Finally, in order to ensure that

source code information is not lost after the parse tree is

disposed of, the CFG maintains all its references to the nodes and

edges of the graph.

4.2 Implementation of the Refactoring Engine
The Refactoring subsystem controls access to the original

CFG, provides a gateway between the GA and the Metrics

subsystem, and generates a final modified CFG to the Output

component. The refactoring subsystem was designed using a

combination of the Model-View-Controller (MVC) Pattern [6]

and a combined Strategy and Command Pattern [13]. The MVC

pattern ensures that the correct view of the CFG is supplied to

the Refactoring subsystem, the Code Smell subsystem, and the

Output subsystem. The Strategy and Command pattern

combination ensures extensibility and the dynamic swap ability

of the GA.

Refactorings were selected after investigating current best

practices to mitigate code smells [12]. For this project we have

selected Encapsulate Field, Inline Class, Move Field, Move

Method, Pull-Up Field, Pull-Up Method, Push-Down Field, Push-

Down Method, and Self-Encapsulate Field [14] and have

implemented them according to the descriptions provided by

Fowler in [12].

The Refactorings are used after an individual (representing a

member of the population in the current iteration of the search) is

generated by the GA, but prior to assessing the fitness of that

individual [14]. The refactored CFG is then passed to the metrics

measurement subsystem and code smell detection subsystem to

evaluate the individual’s fitness [14]. A favorable evaluation of

the individual allows its survival in the next generation of the

population.

4.3 Code Smell Detection and Measurement
Code smells represent poorly engineered code. Using metrics

to quantify code smells [18]; we can determine how well a legacy

system is being maintained and aid the GA with refactoring

procedures that improve the fitness and hence the

comprehensibility of the overall code in the system. Once the

initial CFG has been generated by the Input subsystem, it is

passed by the System Controller to the Refactoring Controller and

eventually into the Refactoring subsystem. The Refactoring

subsystem then starts the GA which performs the initial

measurements of all metrics across the CFG as well as

performing an initial code smell estimate. When the genetic

algorithm reaches a certain code smell threshold level, it passes

processing control back to the Refactoring Controller.

The implementation of code smell analysis is based on the

work of Munro [18] and Roperia [24]. They suggest several

algorithms to aid in finding classes that may exhibit potential

code smells such as “Lazy Class” and “Temporary Field”. We

have selected to implement detection algorithms for the Lazy

Class (LYCL), Temporary Field (TMPF), Long Method (LNGM),

Large Class (LGCL), and Shotgun Surgery (SHOSUR) code

smells. Each algorithm has been modified to detect code smells

across an entire code base and return a count of code smells

detected. This is accomplished through the utilization of the code

smell analysis algorithms during the initialization of the GA

(during initial fitness measurements across the CFG).

Code smell detection is used to generate the list of refactoring

chains. Upon initial measurement of each code smell, if one is

found, a decision algorithm is invoked which will lead to the

generation of a sequence of refactorings which can potentially

remove the found code smell. The decision algorithm determines

if the refactoring can be performed, and which other refactorings

must be present in the refactoring chain to ensure that the present

refactoring’s preconditions will be met. Each decision algorithm

is based on the prerequisite information for the implemented

refactorings as found in Fowler’s description of each refactoring

[12]. These refactoring chains are placed into a list from which

they are randomly selected during the creation or mutation of

individuals by the GA.

4.4 Use of Empirical Metrics and Measures
When refactorings are identified as candidates to be applied to

a CFG, the genetic algorithm first creates a clone of the CFG and

then applies each refactoring in sequential order to the CFG clone.

The genetic algorithm then calculates the values of each metric in

the CFG clone and combines their value to generate a fitness level

for the clone. Li and Henry [17] describe all the metrics used by

our implementation of the GA, the means by which they are

evaluated, and the quality attributes for which they serve as

surrogates.

4.5 Genetic Algorithm
The GA is used to automate the refactoring(s) of legacy

source code. Each GA individual represents a sequence of

refactoring chains to be applied to a CFG. Each refactoring chain

is a sequence of refactorings, where each refactoring is dependent

on the sequence of refactorings that are before it in the sequence,

and the final refactoring is the actual refactoring required to be

performed. Each refactoring is implemented by a corresponding

RefactoringCommand.

The GA is designed to use two operators to affect the

generation of a new population: mutate and crossover. The mutate

operator randomly selects a new refactoring chain from the list of

remaining refactoring chains and swaps it with a randomly

selected position in an individual. Currently the mutation

probability is set to 10%. Crossover is defined to be the random

selection of a point in two individuals where the contents between

them after that point are swapped, thus forming two new

individuals. Due to the potential for invalid refactoring chains to

be generated, the crossover operation has been amended to

include the ability to crossover different sized individuals. In

order to achieve this, a normalization process is applied to the

lengths of individuals, where the crossover point becomes a ratio

of the length of each individual. If an invalid condition is detected

during the processing of a refactoring (such as preconditions not

met or missing input) the refactoring is not applied to the CFG

and processing continues on the next refactoring.

When the individuals of a population are recombined to form a

new population, we select the best member of the population,

where the best member is the individual with the highest fitness

value. The selected individual’s sequence of refactorings is

applied to the current CFG and the resulting CFG’s code smell is

evaluated.

4.6 Generation of Output
Once the refactoring subsystem has completed its tasks and

generated the final CFG with the highest fitness level, it passes

the CFG to the SystemController component, which invokes the

OutputDirector component to generate output. Currently, the

output subsystem only generates structural UML class diagrams;

however, given the amount of information contained in the

CFG, we plan to enhance the output to include source code and

UML sequence diagrams. We utilized the Eclipse Modeling

Framework (EMF) [28] to provide the UML generation

functionality.

5. METHODOLOGY
We elected to develop a small test program as the experimental

subject in which to run all experiments [14]. The development of

a test program has allowed us to provide a simple but easily

extensible platform into which multiple types of code smells can

be introduced with minimal work [14]. The benefit of utilizing our

own experimental subject is that we can run various experiments

across the system and maintain full control of it without the

possibility of having multiple developers introduce changes [14].

Experimental subjects were allocated to separate groups. Each

group was comprised of the original system and clones of the

original code injected with known code smells [14]. Each group in

the experiment was injected with different code smells, while

leaving the third group as a control group [14]. Experiments were

constructed to use the genetic algorithm to generate solutions that

actively remove code smells while maintaining the functionality

of the subjects.

6. RESULTS
The graphs in figures 4 through 15 display results from the

both experimental group and the control group. The dependent

variables for the experiment are the code smells and the CK-suite

of metrics. Code smells detected include: Lazy Class (LYCL),

Long Method (LNGM), Large Class (LGCL), Shotgun Surgery

(SHOSUR), and Temporary Field (TMPF) and are depicted in

Figures 3, 4, 7, 8, 11, and 12. Metrics include: Coupling Between

Objects (CBO), Lack of Cohesion in Object Methods (LCOM),

Weighted Methods per Class (WMC), Class Size (CS), Depth of

Inheritance Tree (DIT), Response for Class (RFC), and Number

of Children (NOC) and are depicted in Figures 5, 6, 9, 10, 13, and

14.

6.1 Group 1 Results

Figure 3. Code smell counts from the fittest individual of a

population after every iteration of the genetic algorithm

[14]

Figure 4. Comparison between smell counts before and

after the genetic algorithm processes the source code

[14]

Figure 5. Average CK-metric values of the subject’s

codebase after every iteration of the genetic

algorithm [14]

6.2 Group 2 Results

6.3 Control Results

Figure 6. Comparison of initial and final metric

measurements after the genetic algorithm processes

the source code [14]

Figure 7. Code smell counts from the fittest individual of

a population after every iteration of the genetic

algorithm

Figure 8. Comparison between smell counts before and

after the genetic algorithm processes the source

code

Figure 9. Average CK-metric values of the subject’s

codebase after every iteration of the genetic

algorithm

Figure 10. Comparison of initial and final metric

measurements after the genetic algorithm processes

the source code

Figure 11. Code smell counts from the fittest individual of

a population after every iteration of the genetic

algorithm

7. DISCUSSION AND ANALYSIS
A number of interesting observations can be made from our

results. First, when comparing the total smell counts (shown in

Figures 3, 7, and 11) with the total codebase average metric

counts (Figures 5, 9, and 13) for all three groups, we observe an

interesting trend. As the current iteration of the GA increases,

both code smell counts (for the fittest individual) and the

measured metrics shows a downward trend. Thus by minimizing

total remaining code smells we are effectively minimizing total

measured metrics as well. This result is also reflected in the

comparisons between initial and final measurements for both code

smell and metrics for both groups. This is depicted in Figures 4, 6,

8, 10, 12 and 14.

Although, the CFG maintains all the information needed to

accurately generate the UML diagram with information such as

accessibility, methods parameters, etc., the EMF does not easily

display all this information. Currently we are researching other

libraries with better representation and display capabilities.

Additionally, we have found that when certain refactorings are

automated placeholders are required to represent new fields,

methods, or classes

8. THREATS TO VALIDITY
We examine four different types of threats to validity:

construct validity, content validity, internal validity, and external

validity [2], [7], [8].

Construct validity refers to the meaningfulness of

measurements and the quality choices made about independent

and dependent variables. One must show that the measurements

are consistent with an empirical relation system [11]. The

dependent variables under consideration are the code smell counts

and the values of all the metrics, as measured each iteration. The

set of CK-metric measurements and measured code smells serve

as surrogates that are clearly related to the comprehensibility

aspects of quality. The former represents maintainability,

reusability, understandability, testability, and reliability attributes

of a system [23], while code smell counts, if viewed as indicators

for new refactorings, can be attributed to increases in

maintainability and extensibility [16]. Our results are clearly

consistent with a real world observation of an empirical relation

system.

The results also show a lack of variability in dependent

variables. This allows us to clearly see trends in the results

without concerns that may obscure the relationships between

dependent and independent variables. In order to strengthen the

construct validity of this study, additional code smells that guide

the GA search should be added. Further, smarter crossover and

mutation techniques could also enrich the search for better

refactorings.

To have content validity, our choice of code smells and metrics

must capture the notion of quality we are trying to improve ‒

comprehensibility of source code. Our choice of metrics was

sufficient to make increases in the comprehensibility of source

code. But, in order to strengthen the content validity of this

research and to validate the metrics selected as surrogates for

quality, we should recruit software engineers of varying skill

levels and use qualitative techniques to examine refactored code

and compare its comprehensibility with the original source code.

This could be done at both the design and implementation levels.

Internal validity refers to cause and effect relationships

between independent and dependent variables. The independent

variable in this study is the current iteration of the GA. Here both

dependent variables are confounding, but additional metrics are

necessary in order to fully investigate the relationship between

them.

External Validity refers to the ability to generalize results.

Currently the GA is utilizing refactoring sequences dependent

upon initial code smell measurements. In order to strengthen the

external validity, we need to investigate the use of this procedure

on larger real world systems. Generalization of results in case

studies is generally a difficult problem and one cannot infer

similar results would be obtained from different types of systems

that could span several domains.

9. CONCLUSION AND FUTURE WORK
Using surrogate measures that capture the notion of

comprehensibility (maintainability, understandability, reusability

Figure 12. Comparison between smell counts before and

after the genetic algorithm processes the source

code

Figure 13. Average CK-metric values of the subject’s

codebase after every iteration of the genetic

algorithm

Figure 14. Comparison of initial and final metric

measurements after the genetic algorithm processes

the source code

and testability), the GA performed satisfactorily and was able to

successfully reduce the overall total smell counts found in source

code using a suite of metrics and code smell decision algorithms

selected to reduce the search space of adequate refactorings. As to

whether this truly increases codebase comprehensibility, we

cannot say. What we need is a user study which is left to future

research.

Whilst results show that automated refactoring is indeed viable

and results are very encouraging, comprehensibility enhancements

can benefit from further automated and manual processes [14].

Thus, a hybrid approach where automated refactorings help with

initial structural changes coupled with expert manual intervention

is the most likely approach that would yield finer results. Thus,

this is not an attempt to take the human out of the loop, but

instead to ease the burden on the human in the first place.

10. REFERENCES
[1] Afenzeller, M., Winkler, S., Wagner, S., and Andreas, B. 2009.

Genetic Algorithms and Genetic Programming: Modern Concepts
and Practical Applications, 1-70. Chapman & Hall/CRC Taylor &
Francis Group, Boca Raton, FL.

[2] Bieman, J. M., Straw, G., Wang, H., Munger, P. W., and Alexander,
R., 2003. Design Patterns and Change Proneness: An Examination of
Five Evolving Systems, In Proceedings of the 9th International
Software Metrics Symposium (September 2003). METRICS’03.
IEEE. Sydney, Australia, 40-49. DOI=
http://doi.ieeecomputersociety.org/10.1109/METRIC.2003.1232454

[3] Bodhuin, T., Canfora, G., Troiano, L., 2007. SORMASA: A tool for
Suggesting Model Refactoring Actions by Metrics-led Genetic
Algorithm, In Proceedings of the 1st Workshop on Refactoring Tools
(July 30 - August 03, 2007, Berlin). WRT 2007. 23-24.

[4] Bowman, M., Briand, L. C., and Labiche, Y., 2007. Multi-objective
Genetic Algorithm to Support Class Responsibility Assignment,
Proceedings of the IEEE International Conference on Software
Maintenance (Paris, France, October 2-5, 2007), ICSM 2007. Paris,
France, 124-133.

[5] Budinsky, F., Steinburg, D., Merks, E., Ellersick, R., and Grose, T.
J., 2004. Eclipse Modeling Framework: A Developer’s Guide, 89-
280. Pearson Education, Inc. Upper Saddle River, NJ.

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M., 1996. Pattern-Oriented software Architecture: A System of
Patterns, 25-193. John Wiley & Sons Ltd. Hoboken, NJ.

[7] Campbell, D. and Cook, T. D., 1979. Quasi-experimentation: Design
and Analysis Issues for Field Settings. Houghton Mifflin Company.
Boston, MA.

[8] Campbell, D. and Stanley, J., 1963. Experimental and Quasi-
experimental Designs for Research. Rand-McNally. Chicago, IL.

[9] Chidamber, S. R. and Kemerer, C. F., 1994. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, 35, 6 (June 1994), 476-493.

[10] Chisalita-Cretu, C., 2009. A Multi-objective Approach for Entity
Refactoring Set Selection Problem, In Proceedings of the Second
International Conference on the Applications of Digital Information
and Web Technologies (London, England, August 4-6, 2009).
ICADIWT’09. 790–795.
DOI=http://dx.doi.org/10.1109/ICADIWT.2009.5273850

[11] Fenton, N. E. and Pfleeger S. L., 1998. Software Metrics: A
Rigorous and Practical Approach, Revised, 2nd ed. PWS Publishing
Co. Boston, MA.

[12] Fowler, M., 200. Refactoring: Improving the Design of Existing
Code, 27-100. Addison-Wesley. New York, NY.

[13] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995. Design
Patterns: Elements of Reusable Object-Oriented Software, 79-345.
Pearson Education, Inc. Upper Saddle River, NJ.

[14] Griffith, I., Wahl, S. and Izurieta, C., 2011.TrueRefactor: An
Automated Refactoring Tool to Improve Legacy System and
Application Comprehensibility, To appear in Proceedings of the
ISCA 24rd International Conference on Computer Applications in
Industry and Engineering.

[15] Kästner, C., Kuhlemann, M., and Batory, D., 2007. Automating
Feature-Oriented Refactoring of Legacy Applications. In
Proceedings of the 1st Workshop on Refactoring Tools (Berlin,
Germany, July 30 - August 03, 2007). WRT 2007. 63-64.

[16] Kerievsky, J., 2005. Refactoring to Patterns, 9-21. Pearson
Education, Inc. Upper Saddle River, NJ.

[17] Li, W. and Henry, S., 1993. Object-oriented Metrics that Predict
Maintainability. J. Sys. Soft., 1993, 23, 2, 111–122. DOI=
http://dx.doi.org/10.1016/0164-1212(93)90077-B

[18] Munro, M. J., 2005. Product Metrics for Automatic Identification of
“Bad Smell” Design Problems in Java Source-code, In Proceedings
of the 11th IEEE International Software Metrics Symposium (Como,
Italy, September 19-22, 2005). METRICS’05. 15. DOI=
http://doi.ieeecomputersociety.org/10.1109/METRICS.2005.38

[19] O’Keeffe, M. and Ó Cinnéide, M., 2008. Search-Based Refactoring:
an empirical study. J. Soft. Maint., 20, 5, 345-364. DOI=
http://dx.doi.org/10.1002/smr.378

[20] O’Keeffe, M. and Ó Cinnéide, M., 2006. Search-based Software
Maintenance, In Proceedings of the 10th European Conference on
Software Maintenance and Reengineering (Bari, Italy, March 22-24,
2006), CSMR 2006, 249-260,
DOI=http://dx.doi.org/10.1109/CSMR.2006.49.

[21] Otero, F. E. B., Johnson, C. G., Freitas, A. A., and Thompson, S. J.,
2010. Refactoring in Automatically Generated Programs. In
Proceedings of the 2nd International Symposium on Search Based
Software Engineering (Benevento, Italy, September 7-9, 2010).
SSBSE 2010.

[22] Perez, J. and Crespo, Y., 2007. A Refactoring Discovery Tool based
on Graph Transofrmation. Proceedings of the 1st Workshop on
Refactoring Tools (Berlin, Germany, July 30 - August 03, 2007).
WRT 2007. 7-9.

[23] Pressman, R. S., 2010. Software Engineering: A Practitioner’s
Approach, 7th ed., 613-44. McGraw-Hill. New York, NY.

[24] Roperia, N., JSmell: A Bad Smell Detection Tool for Java Systems,
UMI Order Number: UMI Order No. 1466306, California State
University.

[25] Russell, S. and Norvig, P., 2010. Artificial Intelligence: A Modern
Approach, 3rd ed. Pearson Education, Inc. Upper Saddle River, NJ.

[26] Shimomura, T., Ikeda, K., and Takahashi, M., 2010. An Approach to
GA-driven Automatic Refactoring based on Design Patterns, In
Proceedings of the 2010 Fifth International Conference on Software
Engineering Advances (Nice, France, August 22-27, 2010).
ICSEA’10. 213-218.

[27] Zibran, M. F. and Roy, C. K., 2011. A Constraint Programming
Approach to Conflict-aware Optimal Scheduling of Prioritized Code
Clone Refactoring, To appear in Proceedings of the 11th IEEE
International Working Conference on Source Code Analysis and
Manipulation (Williamsburg, VA, USA, September 25-26, 2011).
SCAM’11.

[28] Eclipse Modeling Framework Project (EMF).
<http://www.eclipse.org/modeling/emf/>.

[29] Java Compiler Compiler (JavaCC) <http://javacc.java.net/>

[30] Unified Modeling Language, Version 2.3, Object Modeling Group,
2010, <http://www.omg.org/spec/UML/2.3/>.

