
Design Pattern Decay: An Extended Taxonomy and
Empirical Study of Grime and its Impact on Design Pattern

Evolution
Isaac Griffith and Clemente Izurieta (Advisor)

Department of Computer Science
Montana State University

Bozeman, MT 59717-3880
1+(406) 994-4780

isaac.griffith@msu.montana.edu
clemente.izurieta@cs.montana.edu

ABSTRACT
Design patterns are well known solutions to common problems and
are extensively utilized in software development. Yet, little
empirical work has been conducted to evaluate or validate the
consequences that poor design decisions have on pattern
realizations.

This paper describes a research program to further the
understanding of design pattern evolution. Specifically, we focus
on design pattern decay by studying how grime, a decisively
negative consequence of software evolution occurs. The research
proposed herein furthers the exploration of design pattern decay by
providing empirical evidence of grime buildup, a new grime
taxonomy, and the consequences exhibited through decreased
adaptability and maintainability in actual realizations of patterns in
code. These notions will be supported through the development of
semi-automated grime detection and refactoring research tools that
will also link to existing forms of design decay such as code smells,
anti-patterns, and modularity violations. An extension of this
research focuses on the exploration of these notions inlying coupled
pattern realizations.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design –– Design Concepts.
Object-oriented design methods; D.2.11 [Software Engineering]:
Software Architectures –– Patterns; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement ––
Enhancement, Maintainability, Maintenance measurement.

General Terms
Measurement, Design, Experimentation.

Keywords
Software Architectures, Object Oriented Design Patterns, Software
Evolution, Software Decay, Technical Debt.

1. INTRODUCTION
It is well known that design patterns have become a widely used
technique in software development. However, empirical results
show that design patterns are not immune from the negative side
effects of software decay [23][24][25][26]. The decay of pattern
realizations involves the obfuscation of the pattern’s original intent.
That is, as a pattern realization evolves, its structure and behavior
tends to deviate from its original intent. Since design patterns
represent agreed upon methods to solve common problems and are
based upon sound principles of good design, the decay of these
patterns implies an evolution away from good design.

A specific type of design pattern decay is design pattern grime [24]
(further referred to as “grime”). Grime refers to the accumulation
of structural and behavioral artifacts that cause a deviation from the
intended design of a pattern [24]. Although some work has been
done to understand grime, there are still several gaps in our
knowledge of this phenomenon. The overarching goal of this
research is to explore grime and its relationship to other types of
design defects by following a measurement driven approach that
will further characterize its nature, taxonomy, and consequences on
adaptability and maintainability. Methods to mitigate the potential
negative impact it has on the architecture of software products will
be investigated through the development of research tools in
support of semi-automated detection and refactoring strategies.

This paper is organized as follows: Section 2 describes issues with
the current research to be addressed at IDoESE. Section 3 describes
background and related work. Section 4 describes the objectives
and hypotheses that will be explored by this research. Section 5
provides the underlying research methods that will be followed.
Section 6 indicates potential threats to the validity of the study.
Finally, section 7 concludes this paper with a summary of the
current progress of the research program and immediate plans for
future work.

2. CURRENT RESEARCH ISSUES
This dissertation was started in September of 2011 and we seek
advice on its goals and merits; however we would like to receive
the most advice on the following issues:

• Is there an efficient (partially or fully automated) way to validate
detection of design patterns? This is currently a manual task.

• Assuming that we utilize existing design pattern detection, design
defect detection (code smells [14], anti-patterns [6], and
modularity violations [48]), and UML conformance checking
tools, how can we account for the error in measurement
inherent in the various tools?

• We are currently planning on developing custom tools. Would it
be better to rely upon existing, though limited in functionality,
tools? For example, several tools developed to detect code
smells and anti-patterns only find a handful of the known
types.

3. BACKGROUND AND RELATED WORK

3.1 Design Pattern Evolution
Design patterns were widely introduced by Gamma et al. [17], and
represent abstract definitions of agreed upon design solutions to
commonly recurring problems in software development.

Design patterns represent a form of micro-architecture within a
software project, and thus, are also subject to evolutionary
disharmonies. However, said disharmonies can be more readily
studied, but few empirical studies of design pattern evolution and
decay exist in the literature.

In order to study design pattern realizations a means to specify a
pattern is necessary. Various design pattern languages have been
proposed [15][4][7], and although some are visual and some
textual, their intent is similar –a higher level of representational
abstraction. Yet, although the representational aspects may be well
understood, the specification of realizations that are conformant to
their intended design remains a hard problem.

3.2 Software Decay and Aging
Software decay is a specific form of software evolution. When a
system has evolved such that it becomes “harder to change than it
should be” [13], then it is said to have suffered from decay. Another
phenomenon, identified by Parnas [39] that complements software
decay is software aging. It describes how changes in a software
system’s environment can reduce the overall value of software.

Several studies have been conducted on software decay and aging,
as well as on the rejuvenation of software as a means to circumvent
the effects of these phenomena [21][22][47][13][38]. Specific types
of software decay have been identified, such as the code smell
identified by Fowler et al. and the anti-pattern identified by Brown
et al. These and other types of software decay and aging recently
have fallen under the umbrella of technical debt (see section 3.2.2).

3.2.1 Design Pattern Decay
Izurieta and Bieman [24] identified a new type of software decay
known as design pattern decay. Design pattern decay has been
primarily studied by Izurieta and Bieman [24][25][26], Izurieta and
Schanz [42] and Izurieta [23]. Initially, Izurieta [23] identified two
distinct categories of design pattern decay: design pattern grime
and design pattern rot. Of these two types, empirical studies have
only confirmed the existence of grime. Grime was initially
subdivided into three disjoint categories: class grime, modular
grime, and organizational grime. This initial taxonomy is depicted
in the top portion of Figure. 1.

Seminal work by Izurieta [23] found that pattern realizations tend
to accumulate artifacts that obscure the intended use of patterns.
Empirical studies further showed that, of the three types of grime,
modular grime was the most significant [25]. Based on this, Schanz

1 http://www.osgi.org

and Izurieta [42] further expanded a taxonomy of modular grime
by subdividing the original classification into six disjoint types of
grime. They conducted a series of empirical studies across open
source systems in order to validate the existence of these types of
grime. This extended taxonomy (lower portion of Figure 2) was
based on properties of class coupling identified by Briand et al. [5].
Modular grime was hierarchically subdivided by the strength,
scope, and direction of coupling [42].

Further empirical studies on grime have shown implications in the
area of testing [25]. Based on this work Izurieta et al. [28] indicated
that the technical debt landscape should include design pattern
decay along with other types of design defects, such as code smells,
anti-patterns, modularity violations, and certain lower level code
issues that affect design patterns.

3.2.2 Design Pattern Coupling
Design pattern coupling was initially studied by McNatt and
Bieman [33]. Their goal was to identify how often pattern
realization coupling occurs and to investigate the benefits of design
pattern coupling. They found that pattern couplings frequently
occur, and that typical pattern couplings were of the intersection
type (based on use dependencies between pattern realizations).

Bieman and Wang [3] examined the effects of pattern coupling.
They found that couplings tend to introduce dependencies which
can increase the fault proneness and lower the adaptability of the
end product, and that couplings based on association (persistent
couplings) are more likely to be change prone and exhibit higher
coupling (leading to a reduced modification stability).

3.2.3 Technical Debt
Technical debt is a metaphor originally described by Cunningham
[11] as a way of explaining the need to restructure software through
a financial metaphor. Technical debt was later mentioned by both
Fowler et al. [14] as an argument towards the benefits of refactoring
as a means of reducing technical debt. Today, the agile community
views the management of known and unknown technical debt items
as first class objects that once identified, should be tracked (over
their lifetime) as a part of a combined backlog [18]. For a deeper
exploration of recent research, we refer the reader to a
comprehensive multi-vocal literature review by Tom et al. [46].

3.3 Current Research Gaps
The management of design pattern decay forms an important
component, in the management of software aging and technical
debt, which warrants further research. The following is a list of
research gaps that have been identified in this area:

• Grime Taxonomy – Further exploration of organizational and
class grime types is necessary. Initial studies into these types
of grime have not yielded any significant results, but unlike
modular grime, the taxonomy for these types has never been
fully developed. Furthermore, the increasing use of
modularity frameworks, such as OSGi1, [29] indicates that
these types of grime will become more prevalent.

• Pattern Coupling – Patterns are often used in conjunction with
other patterns [33][3]. The exploration of couplings between
patterns, and the effects of these couplings on grime requires
further investigation.

• Quality – The impact of grime on the quality of both software
products and pattern realizations has only been subject to
limited study [25][23][26].

Figure 1. Extended grime taxonomy, which focuses on

modular grime.

Grime

Class Modular

Persistent Temporary

Internal InternalExternal External

Afferent Efferent Afferent Efferent

Organizational

Type

Strength

Scope

Direction

PEAG PEEG TEAG TEEGTIGPIGModular
Grime

Izurieta and
Bieman [24]

Shanz and
Izurieta [43]

• Technical Debt – Current research has looked into how grime
plays a part in the technical debt landscape [49]. The effect of
grime on the technical debt value of a software product and
pattern realizations has yet to be studied.

• Relationships – The notion that different subtypes of grime can
be interrelated or that subtypes of grime and design defects
types can be related is another area of study still left
untouched.

• Automation – The ability to detect grime is a manual and time-
consuming process. In part, this is due to a lack of detection
tools required to identify instances of grime embedded in
design patterns realizations.

• Empirical Studies – Only a small body of work concerning
empirical inquiry of design pattern evolution and decay has
been conducted. Of these studies only a very small selection
of systems have been studied. We expect to expand on the
number of case studies that address design pattern specific
issues across a diverse body of software in several languages.

3.4 Proposed Contributions
In this dissertation we propose the following contributions to
address the gaps:

• Comprehensive literature review covering design pattern grime
and design pattern defects and their relationship to quality,
other types of design defects, and software quality.

• Using Marinescu’s notion of Detection Strategies [32] coupled
with design pattern detection we plan to automate the
detection of grime.

• Using automated techniques to extract information over several
versions of selected software projects to explore how grime
develops in singular and coupled pattern realizations.

• Development of a completed taxonomy of grime, including a
refined taxonomy of class and organizational grime with
enhancements to include design pattern coupling.

• Evaluating a large collection of software (with multiple versions
and from multiple languages) to confirm the existence of
grime.

• Exploring methods to calculate the technical debt, pattern
adaptability, refactoring difficulty, and refactoring complexity
of grime.

• Defining and developing semi-automated and automated
methods to refactor patterns in the face of grime accumulation.

• Development of a defect injection method to study the effects of
design defects on software in a controlled manner.

• Connection between design pattern grime, technical debt, and
software quality.

4. OBJECTIVES
This section identifies the research objectives and underlying
hypotheses. In order to further develop the objectives into testable
hypotheses and identify a set of research questions, we followed the
Goal Question Metric (GQM) method [2]. Each object is identified
by a research goal (RG) followed by a set of research questions
(RQ).

4.1 Research Objectives
RG1 – Analyze pattern realizations for the purpose of detecting

grime with respect to precision and recall from the perspective
of a software system in the context of open source software
projects.
RQ1.1 – What is the precision [1] of the grime detection

algorithms for each type of grime?

RQ1.2 – What is the recall [1] of the grime detection
algorithms for each type of grime?

RQ1.3 – What is the average number of grime instances per
grime type discovered across all identified pattern
realizations?

RQ1.4 – What is the average number of grime instances per
type per system?

RG2 – Analyze pattern realizations for the purpose of tracking
grime buildup with respect to the amount of grime from the
perspective of several versions in the context of open source
software projects.
RQ2.1 – How does grime change over time?
RQ2.2 – Which type of grime is more likely to occur as

pattern realizations evolve?
RQ2.3 – What relationships exist between pattern realization

evolution and grime growth?
RG3 – Analyze pattern realizations affected by grime for the

purpose of identifying when refactoring is needed from the
perspective of several system versions in the context of open
source software projects.
RQ3.1 – What refactoring combinations are needed to remove

each type of grime?
RQ3.2 – When is refactoring needed to return a pattern

realization back to the original pattern?
RQ3.3 – When is refactoring needed to change a pattern

realization to a different pattern (refactoring to other
patterns)?

RQ3.4 – At what point does a pattern realization no longer
resemble the intended design pattern?

RQ3.5 – At what point is refactoring away from patterns
necessary?

RG4 – Analyze pattern realizations for the purpose of evaluation
with respect to susceptibility to grime buildup from the
perspective of grime in the context of open source software
projects.
RQ4.1 – Which patterns or pattern families are more

susceptible to grime accumulation?
RQ4.2 – Which patterns or pattern families need to be

watched more closely by development teams?
RG5 – Analyze pattern realizations for the purpose of identifying

intra- and inter-relationships with respect to pattern grime
from the perspective of a grime taxonomy and other defect
types (i.e., code smells, anti-patterns, modularity violations,
etc.) in the context of open source projects.
RQ5.1 – What are the relationships between the different

types of grime?
RQ5.2 – What relationships exist between grime and code

smells?
RQ5.3 – What relationships exist between grime and anti-

patterns?
RQ5.4 – What relationships exist between grime and

modularity violations?
RG6 – Analyze pattern realizations for the purpose of evaluating

technical debt with respect to grime from the perspective of
several system versions in the context of open source projects.
RQ6.1 – What effect does each type of grime have on

technical debt of an entire software system?
RQ6.2 – How can we calculate the technical debt associated

with the grime buildup in a pattern realization?
RG7 – Analyze pattern realizations for the purpose of evaluation

with respect to grime form the perspective of design pattern
couplings in open source software.
RQ7.1 – What is the precision and recall of pattern realization

coupling detection algorithms?

RQ7.2 – What is the precision and recall of pattern coupling
grime detection algorithms?

RQ7.3 – Which pattern combinations, as identified by
Gamma et al. [17], are more susceptible to grime
buildup?

RQ7.4 – Which type of grime is more likely to build up in
coupled design patterns?

RG8 – Analyze pattern realizations afflicted with grime for the
purpose of evaluation with respect to maintainability and
adaptability from the perspective of design pattern realizations
in the context of open source software projects.
RQ8.1 – What is the effect of each type of grime on the

adaptability of a pattern realization?
RQ8.2 – What is the effect of each type of grime on the

maintainability of a pattern realization?

4.2 Important Metrics
We have identified several metrics that will be used for the various
experiments described in section 5.

M1. Grime Count (GC) – The total amount of grime accumulated
within a pattern realization. This metric will be used in
RQ1.1—RQ1.4, RQ2.1, RQ2.2, RQ4.1, RQ4.2, RQ6.1,
RQ6.2, RQ7.1 and RQ7.2.

M2. Refactoring Count (RCT) – A count of the number of
refactorings needed to remove grime buildup within a pattern
realization. This metric will be used in RQ3.1—RQ3.5, RQ
6.1 and RQ6.2.

M3. Refactoring Difficulty (RD) – A measure of the difficulty of
refactoring a design defect. This metric will be used in
RQ3.1—RQ3.5, RQ6.1 and RQ6.2.

M4. Grime Susceptibility (GS) – A measure of the probability that
a pattern realization will accumulate grime. By grouping
pattern realizations, in a yet to be determined fashion, and
counting the amount of grime, we can identify which members
of the group are more susceptible to grime. This metric will be
used in RQ4.1, RQ4.2, and RQ7.3.

M5. Pattern Coupling Count (PCC) – A measure of the number of
distinct pattern realizations that another pattern realization is
coupled to. This metric will be used in RQ7.1—RQ7.4.

M6. Technical Debt (TD) – a measure of the cost required to
remove all technical debt principle in a particular software
system. This metric will be used in RQ6.1 and RQ6.2

M7. Grime Growth (GG) – A measure of the change in grime from
a specific pattern realization over the evolution of the system.
This metric will be used in RQ2.1—RQ2.3, RQ6.1, RQ6.2,
RQ7.1—RQ7.4, RQ8.1 and RQ8.2.

M8. Pattern Adaptability (PA) – A measure of the ability of a
pattern realization to adapt to future requirements. It will be
measured using the surrogate metric: Architecture
Adaptability Index (AAI) [44]. This metric, AAI, will be used
in RQ8.1 and RQ8.2.

M9. Pattern Maintainability (PM) – A measure of the
maintainability of a design pattern. We will use the following
surrogate metrics for maintainability as indicated by Li and
Henry [31]: From the Chidamber and Kemerer [9] metrics
suite we will use Depth of Inheritance Tree (DIT), Number of
Children (NOC), Lack of Cohesion in Object Methods
(LCOM), Weighted Methods per Class (WMC) and Response
For Class (RFC). From Li and Henry [31] we will use Data
Abstraction Coupling (DAC), Message Passing Coupling
(MPC) and Number of Methods (NOM). These metrics will
be used in RQ8.1 and RQ8.2.

M10. Grime Severity (GS) – A measure of the severity of an
instance of a specific form of grime. These metrics will be
used in RQ6.1, RQ6.2, RQ8.1 and RQ8.2.

4.3 Working Hypotheses
H1. Accurate detection of grime is achievable with automated

detection strategies.
H2. There exists evidence to support the accumulation of modular,

class, and organizational grime in open source systems
H3. There exists a point when the grime buildup within a pattern

realization indicates that the pattern realization must be
refactored to its original intent, to another more applicable
pattern, or away from patterns in general and towards alternate
good designs.

H4. Pattern susceptibility to each type of grime is related to the type
of pattern (behavioral, creational, or structural) or structural
meta-pattern [40] a pattern realization belongs to.

H5. Relationships and Grime
H5.1. Grime is distinguishable through the different types of

relationships that exist between grime types.
H5.2. Grime is distinguishable through the different types of

relationships that exist between grime types and other
non-pattern related design defects.

H6. Grime and Technical Debt:
H6.1. Grime has a negative effect on the technical debt of a

software system as a whole.
H6.2. Grime has a negative effect on the technical debt of a

pattern realization.
H7. Patterns tend to be used together and this use makes these

coupled pattern realizations more susceptible to grime
buildup.

H8. Each type of grime has a significant negative impact on the
maintainability and adaptability of pattern realizations.

5. METHODS
This section describes the underlying research methods used to
further understand grime and its effects.

5.1 Data Collection
The data collection process and framework is depicted in Figure 2.
Depending on the study approach (controlled experiment or case
study) we can begin in one of two ways. Case studies will be carried
out in selected groups of open source projects that are
representative of different programming languages. In a controlled
experiment, we utilize a model injector (a tool designed to
introduce software artifacts into a model of the software) to both
create a model and inject the grime (or other design defects) entities
under study. Since the model is a representation of the source code,
once the model is available, product measures are extracted from
the model and both the model and metrics are placed into the
database. For the case studies, we also simultaneously collect
pattern realization information using design pattern detection
methods, which are then manually verified. Upon verification, the
pattern realization information is stored in the database.

The design information now stored in the database is used to collect
additional data. Simultaneously, we extract design defect
information (such as code smells, anti-patterns, and modularity
violations), identify and extract grime information, and identify
coupled pattern realizations. Once all this information is collected,
it is stored in the database. In the final step, design information is
used to extract response measures that are in turn used in the
analysis phase. The following subsections provide greater detail on
the process and tools which makeup the data collection framework.

5.1.1 Design Patterns Studied
The proposed study will encompass pattern realizations, which are
either injected or found through detection methods, as defined by
Gamma et al. [17].

5.1.2 Software Studied
The proposed study evaluates the software systems composed of
several open source systems. We intend to develop a collection of
open source software developed in the JavaTM, C++, C#, and Ruby
programming languages using the method developed by Tempero
et al. [45].

Every available software version in all available systems contained
in the corpus will be evaluated. The selection of systems to be
included in the evaluation depends on the research goal being
addressed. Some goals require a single system and others a
complete evolutionary analysis of multiple versions and possibly
multiple systems.

5.1.3 Design Pattern Detection
In order to evaluate grime, we must first detect pattern realizations
in their setting of use. In order to reduce the amount of work
required to manually identify and validate pattern realizations, we
are investigating design pattern detection algorithms that will be
directly embedded into the framework.

2 http://www.uml.org

5.1.4 Parser and Metrics Measurement
In order to detect both grime and other design defects we have
constructed a parser using the SableCC framework [16]. We have
also implemented several metrics [37][35][34][32][30] that have
been shown to detect different types of grime as well as various
other defects (i.e., code smells, anti-patterns, and modularity
violations). Once the structural representations and metrics have
been collected, they are stored in the database.

5.1.5 Design Pattern Grime Detection
There exists no automated method for detecting pattern grime
within a software system. We are exploring the combination of
RBML-UML conformance checking algorithms [43] and
algorithms based on Marinescu’s detection strategies [32] to
develop an automated tool for identifying grime instances. The
output of this tool will identify grime instances associated with a
known pattern realization. Identified grime instances will be stored
in the database. It should be noted that if automated or semi-
automated methods are not fruitful in identifying grime, manual
detection can still be utilized without hindering the overall process
but at a significant cost in time.

5.1.6 Design Defect Detection
Utilizing the same underlying technology as the grime detector, we
will include detection strategies for code smells, anti-patterns, and
other design defects. These detection strategies are based on the
work of Marinescu [32], Lanza and Marinescu [30], Moha et al.
[34][35][36], Munro [37], and others. These detection strategies
utilize the metrics and structural information stored in the database.
The goal is to extract and store in the database detected design
defects associated with a pattern realizations and its surrounding
classes.

5.1.7 Design Pattern Coupling Detection
We will analyze the structural coupling between pattern
realizations. These pattern couplings are detected by analysis of
shared architecture between pattern realizations in a given
component of software. The information for this process is
extracted from the database and analyzed by a form of pair-wise
comparison between realizations.

5.1.8 Software Model and Model Injection
We will utilize a meta-model of a software project that facilitates
information extraction from a common data structure. The model
uses a graph that combines the semantics of UML2 class and
sequence diagrams with that of call-graphs. This model can either
be extracted from an abstract syntax tree provided by a parser or
can be generated programmatically. The model can be used directly
or design defects (such as grime, code smells, etc.) and pattern
realizations can be injected into the model based on formal
descriptions (provided via XML3 and RBML [15] descriptions).

5.2 Research Approach
The research approach selected depends on the research question,
but it can be an experiment or case study.

Initially we will conduct a systematic literature review to support
the development of the grime taxonomy as well as to investigate
existing approaches towards automating detection of design defects

3 http://www.w3.org/TR/2006/REC-xml11-20060816/

Figure 2. Depiction of the data collection process and

framework.

Design
Pattern

Detection

Metrics
Measurement

Grime
Detection

Design
Defect

Detection

Measure
Response
Metrics

Design
Info

Analysis

Measurements
Design Information

Results

Analysis Results

Software Projects

Source

Code

Parser

Software
Model

Model, Metrics

Measures

Pattern
Coupling
Detection

Design
Info

Coupled
Patterns

Design
Info

Grime
Info

Design
Info

Detected
Defects

SourceCode

Manual
Verification

Identified
Patterns

Verified
Patterns

Pattern
Definitions

Design Defect
Definitions

Model
Injector

RBMLXML

Metrics
Measurement

Model,
Metr

ics

Meas
ures

Software
Model

Manual
Verification

Verified
Results

Design and
Metrics Db

such as code smells. This literature review will not only investigate
academic sources but industry sources as well.

RQ1.1 and RQ1.2 will be conducted as an experiment to evaluate
the detection strategies used to identify grime in pattern
realizations. The experiment will be conducted by executing
detection algorithms across generated and grime injected pattern
realizations. We will then calculate the precision and recall of each
algorithm. We will compare these results against pure random
assignment in a 10-fold cross validation [1] approach. The data will
be analyzed using a student’s t-test for paired data [41]. RQ1.3 and
RQ1.4 will be investigated by using these tested detection
algorithms to identify grime in the collected software projects.

RQ2.1—RQ2.3 will be evaluated through the use of a multiple case
study design by observing the evolution of grime in pattern
realizations across the different versions of each software project
under study. We will look for statistically significant correlations
between time and changes in different types of grime.

RQ3.1—RQ3.5 will be evaluated using a controlled experiment
and a multiple case study. The controlled experiment will evaluate
refactoring strategy effectiveness, until we have identified
refactoring strategies to remove each type of grime (RQ3.1). We
will also vary the amount of injected grime to determine the effect
on PA, RD, and RC (RQ3.2—RQ3.5). We are looking to develop
a statistical model (mathematical model which describes the
behavior of an object under study using random variables [41], in
this case grime and refactoring), evaluated using the ANOVA
method [41], that can assess alternatives and provide decision
support before refactorings are performed. Once, the statistical
models have been evaluated we will use them to evaluate pattern
realizations found within the available software projects.

RQ4.1 and RQ4.2 will be evaluated using a multiple longitudinal
case study approach across all versions of available software. For
each type of pattern (creational, structural, behavioral or meta-
pattern type) we will extract grime affected pattern realizations and
evaluate the pattern’s susceptibility to grime accumulation. We will
evaluate results using a one-way ANOVA model.

RQ5.1—RQ5.4 will be evaluated using a controlled experiment
and a multiple case study approach across all versions of available
software. The controlled experiment will be used to validate the
detection algorithms (similar to the approach used in RQ1.1 and
RQ1.2). The case study approach will collect information regarding
code smells, anti-patterns, modularity violations, and grime with
corresponding source code locations within the software. We will
then use the collected instances of grime and design defects to
determine if any relationships exist between the different types of
grime, and to determine if any relationships exist between types of
grime and the other design defects. Once identified, we will
evaluate if there is statistical evidence that suggests whether defect
type relationships are meaningful.

RQ6.1 will be conducted as a controlled experiment. We will
generate a system with pattern realizations injected with grime.
Prior to and after each injection we will measure the technical debt
associated with the system. We can then identify the effect that each
type of grime has on technical debt. Along with the evaluation of
the impact on TD we will also consider the evaluation of grime
severity and its relationship to TD. The analysis of the effect of each
type of grime on technical debt will be conducted through the use
of an ANOVA model and pair-wise comparison. We will then
conduct the multiple case study described in RQ6.2 to validate the
statistical models.

RQ7.1 and RQ7.2 will be evaluated using a controlled experiment.
The analysis is similar to RQ1.1 and RQ1.2. RQ7.3 and RQ7.4 and
will be evaluated using a multiple case study that cross cuts the
available software projects. The case study will investigate grime
buildup in pattern couplings and identify coupled patterns that
appear more susceptible to grime. The goal is to develop statistical
models, evaluated using ANOVA, of how coupling affects non-
coupled grime and grime susceptibility to identify which pattern
coupling-based grime types, patterns are more susceptible to.

RQ8.1 and RQ8.2 will be evaluated using a controlled experiment
and a multiple case study approach. For each pattern realization the
PA, PM, and GG metrics will be measured before and after grime
injection. As grime is introduced the change in PA and PM will be
observed. We will then evaluate the change in PA and PM versus
GG for statistically significant correlations. In the case studies we
will be tracking grime to see if the relationship holds in actual
software systems. We also expect to explore how grime and grime
severity affects portions of the Quamoco[12] quality model by
specifically focusing on maintainability and adaptability as
measured by PM and PA.

6. THREATS TO VALIDITY
There are several threats to the validity of the proposed study,
which are based on the classification scheme of Cook, Campbell
and Day [10] and of Campbell et al. [8]. We have identified threats
to internal and external validity, and seek advice to minimize
construct validity, before we setup the experiments.

There is a potential threat to internal validity due to other design
defects overlapping with grime. In order to control for this we
conduct experiments to determine relationships between other
design defects and grime. Similarly, a potential threat can occur due
to overlap between specific types of grime. Although considered to
be disjoint within each type (modular, class, and organizational)
there may be overlap between types. To control for this we will
conduct experiments to evaluate relationships between types of
grime.

Given that these studies focus on open source software, there are
two threats to external validity. The first is the exclusive use of open
source software. We can only control for this threat by including
studies on commercial software, but this is left to future study.

The second threat to the external validity is the total number of
patterns and pattern realizations studied. In previous studies on
grime have focused on a small number and types of design patterns.
Here we will use a large number of realizations of each type of
pattern and we are looking into the entire catalog of the Gang of
Four patterns, which alleviates the issue that only a small subset of
well-known patterns is likely to have grime. Because of the threats
we cannot generalize beyond those systems studied.

7. CONCLUSIONS
In this paper we described a set of empirical studies to further
explore and understand the phenomenon of design pattern grime.
We intend to not only explore the accumulation of grime via pattern
realization evolution but to also explore the intra-relations of grime
types as well as the inter-relations between grime types and other
design defects, which will help further the understanding of how
grime affects technical debt.

The current status of this research is in the framework development
phase. Based on our previous work we have developed the
underlying metrics, model, and parsing tools [20] and we have
conducted initial research into the development of automated

refactoring techniques [19]. We have also begun work focusing on
the uncertainty of technical debt and other measures [27]. Presently,
we are beginning work towards extracting design pattern
realizations and pattern coupling information from the collection of
open source projects and completing the grime taxonomy.

8. REFERENCES
[1] E. Alpaydin. 2010. Introduction to Machine Learning (2nd.

ed.). The MIT Press, Cambridge, MA.
[2] V. Basili, G. Caldiera and H. D. Rombach. 1994. The goal

question metric approach. Encyclopedia of Software
Engineering. 2, 528-532. DOI=http://dx.doi.org/
10.1002/0471028959.sof142.

[3] J. M. Bieman and H. Wang. 2006. Design pattern coupling,
change proneness, and change coupling: A pilot study.
Technical Report. Colorado State University.

[4] J. Bosch. 1998. Design patterns as language constructs. J.
Object-Oriented Programming. 11, 2, 18-32.

[5] L. C. Briand, J. Daly, and J. Wust. 1999. A unified
framework for coupling measurement in object-oriented
systems. IEEE Trans. Software Engineering. 25, 1 (Jan.-Feb.
1999), 91-121. DOI= http://dx.doi.org/10.1109/32.748920.

[6] W. H. Brown, R. C. Malveau, H. W. McCornnick III, and T.
J. Mowbray. 1998. Antipatterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley & Sons,
Inc., New York, NY.

[7] F. Buschmann, K. Henney, and D. Schimdt. 2007. Pattern-
oriented Software Architecture, Vol. 5: On Patterns and
Pattern Language. John Wiley & Sons, Inc., New York, NY.

[8] D. T. Campbell, J. C. Stanley, and N. L. Gage. 1963.
Experimental and Quasi-experimental Designs for Research.
Houghton Mifflin, Boston, MA.

[9] S. R. Chidamber and C. F. Kemerer. 1991. Towards a
metrics suite for object oriented design. SIGPLAN Not. 26,
11 (November 1991), 197-211. DOI=
http://doi.acm.org/10.1145/118014.117970.

[10] T. D. Cook, D. T. Campbell, and A. Day. 1979. Quasi-
experimentation: Design & Analysis Issues for Field
Settings. Houghton Mifflin, Boston, MA.

[11] W. Cunningham. 1992. The WyCash portfolio management
system. SIGPLAN OOPS Mess. 4, 2 (December 1992), 29-
30. DOI= http://doi.acm.org/10.1145/157710.157715

[12] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K.
Lochmann, and S. Wagner. 2011. The quamoco tool chain
for quality modeling and assessment. In Proceedings of the
33rd International Conference on Software Engineering
(Honolulu, HI, USA, May 21-28). ICSE’11, 1007-1009.
DOI=http://doi.acm.org/10.1145/1985793.1985977.

[13] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus. 2001.
Does code decay? Assessing the evidence from change
management data. IEEE Trans. Software Engineering. 27, 1
(Jan. 2001), 1-12. DOI=http://dx.doi.org/10.1109/32.895984.

[14] M. Fowler, K. Beck, J. Brant, and W. Opdyke. 1999.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman, Inc., Reading, MA.

[15] R. B. France, D. K. Kim, E. Song, and S. Ghosh. 2002.
Patterns as Precise Characterizations of Designs. Technical
Report. Colorado State University.

[16] E. Gagnon and L. Hendren. 1998. SableCC, an object-
oriented compiler framework. In Proceedings of the
Technology of Object-Oriented Languages (Santa Barbara,
CA, USA, August 03-07, 1998). TOOLS USA’98. 140-154.
DOI= http://dx.doi.org/10.1109/TOOLS.1998.711009.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994.
Design Patterns: Elements of Reusable Object-Oriented
Languages and Systems. Addison-Wesely Longman, Inc.,
Reading, MA.

[18] Gat and J. D. Heintz. 2011. From assessment to reduction:
how cutter consortium helps rein in millions of dollars in

[19] Griffith, S. Wahl, and C. Izurieta. 2011. Evolution of legacy
system comprehensibility through automated refactoring. In
Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering (Lawrence,
Kansas, USA, November 12, 2011). MALETS '11. ACM,
New York, NY, USA, 35-42. DOI=
http://doi.acm.org/10.1145/2070821.2070826.

[20] Griffith, S. Wahl, and C. Izurieta. 2011. TrueRefactor: An
automated refactoring tool to improve legacy system and
application comprehensibility. In Proceedings of the of ISCA
24th International Conference on Computer Applications in
Industry and Engineering (Honolulu, HI, USA, November
16-18). CAINE'11.

[21] M. Grottke, R. Matias, and K. Trivedi. 2008. The
fundamentals of software aging. In Proceedings of the IEEE
International Conference on Software Reliability
Engineering Workshops (Seattle, WA, USA, November 11-
14, 2008). ISSRE Wksp 2008. 1-6. DOI=
http://dx.doi.org/10.1109/ISSREW.2008.5355512.

[22] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. 1995.
Software rejuvenation: analysis, module and applications. In
Proceedings of the Twenty-Fifth International Symposium on
Fault-Tolerant Computing (Pasadena, CA, USA, June 27-30,
1995). FTCS-25. 381-390. DOI=
http://dx.doi.org/10.1109/FTCS.1995.466961.

[23] C. Izurieta. 2009. Decay and Grime Buildup in Evolving
Object Oriented Design Patterns. Ph.D. Dissertation.
Colorado State University, Fort Collins, CO, USA.
Advisor(s) James Bieman. AAI3385139.

[24] C. Izurieta and J. Bieman. 2007. How software designs
decay: A pilot study of pattern evolution. In Proceedings of
the First Symposium on Empirical Software Engineering and
Measurement (Madrid, Spain, September 20-21, 2007).
ESEM 2007. 449-451. DOI=
http://dx.doi.org/10.1109/ESEM.2007.55.

[25] C. Izurieta and J. Bieman. 2008. Testing consequences of
grime buildup in object oriented design patterns. In
Proceedings of the 1st International Conference on Software
Testing, Verification, and Validation (Lillehammer, Norway,
April 09-11, 2008). ICST 2008, 171-179. DOI=
http://dx.doi.org/10.1109/ICST.2008.27.

[26] C. Izurieta and J. Bieman. 2013. A multiple case study of
design pattern decay, grime, and rot in evolving software
systems. J. Software Quality. 21, 2 (Jun. 2013), 289-323.
DOI= http://dx.doi.org/10.1007/s11219-012-9175-x.

[27] C. Izurieta, I. Griffith, D. Reimanis, R. Luhr. 2013. On the
uncertainty of technical debt measurements. In Proceedings
of the 4th International Conference on Information Science
and Applications (Pattaya, Thailand, June 24-26, 2013).

http://dx.doi.org/10.1109/32.748920
http://doi.acm.org/10.1145/118014.117970
http://doi.acm.org/10.1145/157710.157715
http://doi.acm.org/10.1145/1985793.1985977
http://dx.doi.org/10.1109/TOOLS.1998.711009
http://doi.acm.org/10.1145/2070821.2070826
http://dx.doi.org/10.1109/ISSREW.2008.5355512
http://dx.doi.org/10.1109/FTCS.1995.466961
http://dx.doi.org/10.1109/ESEM.2007.55
http://dx.doi.org/10.1109/ICST.2008.27
http://dx.doi.org/10.1007/s11219-012-9175-x

ICISA 2013. IEEE Computer Society Press, Los Alamitos,
CA, USA.

[28] C. Izurieta, A. Vetro, N. Zazworka, Y. Cai, C. Seaman, and
F. Shull. Organizing the technical debt landscape. In
Proceedings of the Third International Workshop on
Managing Technical Debt (Zurich, Sweden, June 5, 2012).
MTD’12. 23-26. DOI=
http://dx.doi.org/10.1109/MTD.2012.6225995.

[29] K. Knoernschild. 2012. Java Application Architecture:
Modularity Patterns with Examples Using OSGi. Pearson
Education, Inc., Boston, MA.

[30] M. Lanza and R. Marinescu. 2006. Object-Oriented Metrics
in Practice: Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented
Systems. Springer-Verlag Berlin Heidelberg, Berlin,
Germany.

[31] W. Li and S. Henry. 1993. Object-oriented metrics that
predict maintainability. J. Syst. and Sftwr. 23, 2, 111-122.

[32] R. Marinescu. 2004. Detection strategies: metrics-based rules
for detecting design flaws. In Proceedings of the 20th IEEE
International Conference on Software Maintenance
(Chicago, IL, USA, September 11-17, 2004). ICSM 2004.
350-359. DOI=
http://dx.doi.org/10.1109/ICSM.2004.1357820.

[33] W. McNatt and J. Bieman. 2001. Coupling of design
patterns: common practices and their benefits. In
Proceedings of the 25th Annual International Computer
Software and Applications Conference (Chicago, IL, USA,
October 08-12, 2001). COMPSAC 2001. 574-579. DOI=
http://dx.doi.org/10.1109/CMPSAC.2001.960670.

[34] N. Moha, Y. Guéhéneuc, L. Duchien, and A. F. Le Meur.
2009. DECOR: A method for the specification and detection
of code and design smells. IEEE Trans. Software
Engineering. 36, 1, (Jan.-Feb. 2010), 20-36. DOI=
http://dx.doi.org/10.1109/TSE.2009.50.

[35] N. Moha, Y. Guéhéneuc, and P. Leduc. 2006. Automatic
generation of detection algorithms for design defects. In
Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering (Tokyo, Japan,
September 18-26, 2006). ASE '06. 297-300. DOI=
http://dx.doi.org/10.1109/ASE.2006.22.

[36] N. Moha, Y. Guéhéneuc, A. F. Le Meur, and L. Duchien.
2008. A domain analysis to specify design defects and
generate detection algorithms. In Fundamental Approaches
to Software Engineering Lecture Notes in Computer Science.
4961. 276-291. Springer Berlin / Heidelberg, Berlin,
Germany. DOI= http://dx.doi.org/10.1007/978-3-540-78743-
3_20.

[37] M. Munro. 2005. Product metrics for automatic identification
of "bad smell" design problems in java source-code. In
Proceedings of the 11th IEEE International Symposium on
Software Metrics (Como, Italy, September 19-22, 2005).
METRICS 2005. 15-15. DOI=
http://dx.doi.org/10.1109/METRICS.2005.38.

[38] M. Ohlsson, A. von Mayrhauser, B. McGuire, and C.
Wohlin. 1999. Code decay analysis of legacy software
through successive releases. In Proceedings of the Aerospace
Conference (Aspen, CO, USA, March 7, 1999). AERO 1999.

5, 69-81. IEEE. DOI=
http://dx.doi.org/10.1109/AERO.1999.794163.

[39] D. L. Parnas. 1994. Software aging. In Proceedings of the
16th International Conference on Software Engineering
(Sorrento, Italy May 16-21, 1994). ICSE '94. 279-287. IEEE
Computer Society Press, Los Alamitos, CA, USA.

[40] D. Posnett, C. Bird, and P. Dévanbu. 2011. An empirical
study on the influence of pattern roles on change-proness. J.
Empirical Software Engineering. 16, 3 (Jun. 2011), 396-423.
Springer US. DOI= http://dx.doi.org/10.1007/s10664-010-
9148-2.

[41] F. Ramsey and D. Schafer. 2002. The Statistical Sleuth: A
Course in Methods of Data Analysis (2nd. ed.). Cengage
Learning, Independence, KY.

[42] T. Schanz and C. Izurieta 2010. Object oriented design
pattern decay: a taxonomy. In Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software
Engineering and Measurement (Bolzano-Bozen, Italy,
September 16-17, 2010). ESEM '10. 7, 1-8. ACM, New
York, NY, USA. DOI=
http://doi.acm.org/10.1145/1852786.1852796.

[43] S. Strasser, C. Frederickson, K. Fenger, and C. Izurieta.
2011. An automated software tool for validating design
patterns. In Proceedings of the of ISCA 24th International
Conference on Computer Applications in Industry and
Engineering (Honolulu, HI, USA, November 16-18).
CAINE'11.

[44] N. Subramanian and L. Chung. 2001. Metrics for software
adaptability. In Proceedings of Software Quality
Management Conference (Leicestershire, United Kingdom,
April 18-20, 2001). SQM 2001.

[45] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M.
Lumpe, H. Melton, and J. Noble. 2010. The qualitas corpus:
A curated collection of java code for empirical studies. In
Proceedings of the 17th Asia Pacific Software Engineering
Conference (Sydney, Australia, November 30 – December 3,
2010). APSEC 2010. 336-345. DOI=
http://dx.doi.org/10.1109/APSEC.2010.46.

[46] E. Tom, A. Aurum, and R. Vidgen. 2013. An exploration of
technical debt. J. Syst. and Softw. 86, 6 (Jun. 2013), 1498-
1516. DOI=http://dx.doi.org/10.1016/j.jss.2012.12.052.

[47] K. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova.
2000. Modeling and analysis of software aging and
rejuvenation. In Proceedings of the 33rd Annual Simulation
Symposium (Washington, DC, USA, April 16-20, 2000). SS
2000. 270-279. DOI=
http://dx.doi.org/10.1109/SIMSYM.2000.844925.

[48] S. Wong, Y. Cai, M. Kim, and M. Dalton. 2011. Detecting
software modularity violations. In Proceedings of the 33rd
International Conference on Software Engineering
(Honolulu, HI, USA, May 21-28). ICSE’11, 411-420. DOI=
http://doi.acm.org/10.1145/1985793.1985850.

[49] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C.
Seaman, and F. Shull. 2013. Comparing four approaches for
technical debt identification. Software Quality Journal. (Apr.
2013). 1-24. Springer US. DOI=
http://dx.doi.org/10.1007/s11219-013-9200-8.

http://dx.doi.org/10.1109/MTD.2012.6225995
http://dx.doi.org/10.1109/ICSM.2004.1357820
http://dx.doi.org/10.1109/CMPSAC.2001.960670
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1109/ASE.2006.22
http://dx.doi.org/10.1007/978-3-540-78743-3_20
http://dx.doi.org/10.1007/978-3-540-78743-3_20
http://dx.doi.org/10.1109/METRICS.2005.38
http://dx.doi.org/10.1109/AERO.1999.794163
http://dx.doi.org/10.1007/s10664-010-9148-2
http://dx.doi.org/10.1007/s10664-010-9148-2
http://doi.acm.org/10.1145/1852786.1852796
http://dx.doi.org/10.1109/APSEC.2010.46
http://dx.doi.org/10.1016/j.jss.2012.12.052
http://dx.doi.org/10.1109/SIMSYM.2000.844925
http://doi.acm.org/10.1145/1985793.1985850
http://dx.doi.org/10.1007/s11219-013-9200-8

	1. INTRODUCTION
	2. CURRENT RESEARCH ISSUES
	3. BACKGROUND AND RELATED WORK
	3.1 Design Pattern Evolution
	3.2 Software Decay and Aging
	3.2.1 Design Pattern Decay
	3.2.2 Design Pattern Coupling
	3.2.3 Technical Debt

	3.3 Current Research Gaps
	3.4 Proposed Contributions

	4. OBJECTIVES
	4.1 Research Objectives
	4.2 Important Metrics
	4.3 Working Hypotheses

	5. METHODS
	5.1 Data Collection
	5.1.1 Design Patterns Studied
	5.1.2 Software Studied
	5.1.3 Design Pattern Detection
	5.1.4 Parser and Metrics Measurement
	5.1.5 Design Pattern Grime Detection
	5.1.6 Design Defect Detection
	5.1.7 Design Pattern Coupling Detection
	5.1.8 Software Model and Model Injection

	5.2 Research Approach

	6. THREATS TO VALIDITY
	7. CONCLUSIONS
	8. REFERENCES

