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ABSTRACT 
Design patterns are well known solutions to common problems and 
are extensively utilized in software development. Yet, little 
empirical work has been conducted to evaluate or validate the 
consequences that poor design decisions have on pattern 
realizations. 

This paper describes a research program to further the 
understanding of design pattern evolution. Specifically, we focus 
on design pattern decay by studying how grime, a decisively 
negative consequence of software evolution occurs. The research 
proposed herein furthers the exploration of design pattern decay by 
providing empirical evidence of grime buildup, a new grime 
taxonomy, and the consequences exhibited through decreased 
adaptability and maintainability in actual realizations of patterns in 
code. These notions will be supported through the development of 
semi-automated grime detection and refactoring research tools that 
will also link to existing forms of design decay such as code smells, 
anti-patterns, and modularity violations. An extension of this 
research focuses on the exploration of these notions inlying coupled 
pattern realizations. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design –– Design Concepts. 
Object-oriented design methods; D.2.11 [Software Engineering]: 
Software Architectures –– Patterns; D.2.7 [Software 
Engineering]:  Distribution, Maintenance, and Enhancement –– 
Enhancement, Maintainability, Maintenance measurement. 

General Terms 
Measurement, Design, Experimentation. 

Keywords 
Software Architectures, Object Oriented Design Patterns, Software 
Evolution, Software Decay, Technical Debt. 

1. INTRODUCTION 
It is well known that design patterns have become a widely used 
technique in software development. However, empirical results 
show that design patterns are not immune from the negative side 
effects of software decay [23][24][25][26]. The decay of pattern 
realizations involves the obfuscation of the pattern’s original intent. 
That is, as a pattern realization evolves, its structure and behavior 
tends to deviate from its original intent. Since design patterns 
represent agreed upon methods to solve common problems and are 
based upon sound principles of good design, the decay of these 
patterns implies an evolution away from good design.  

A specific type of design pattern decay is design pattern grime [24] 
(further referred to as “grime”). Grime refers to the accumulation 
of structural and behavioral artifacts that cause a deviation from the 
intended design of a pattern [24]. Although some work has been 
done to understand grime, there are still several gaps in our 
knowledge of this phenomenon. The overarching goal of this 
research is to explore grime and its relationship to other types of 
design defects by following a measurement driven approach that 
will further characterize its nature, taxonomy, and consequences on 
adaptability and maintainability. Methods to mitigate the potential 
negative impact it has on the architecture of software products will 
be investigated through the development of research tools in 
support of semi-automated detection and refactoring strategies. 

This paper is organized as follows: Section 2 describes issues with 
the current research to be addressed at IDoESE. Section 3 describes 
background and related work. Section 4 describes the objectives 
and hypotheses that will be explored by this research. Section 5 
provides the underlying research methods that will be followed. 
Section 6 indicates potential threats to the validity of the study. 
Finally, section 7 concludes this paper with a summary of the 
current progress of the research program and immediate plans for 
future work. 

2. CURRENT RESEARCH ISSUES 
This dissertation was started in September of 2011 and we seek 
advice on its goals and merits; however we would like to receive 
the most advice on the following issues: 

• Is there an efficient (partially or fully automated) way to validate 
detection of design patterns?  This is currently a manual task. 

• Assuming that we utilize existing design pattern detection, design 
defect detection (code smells [14], anti-patterns [6], and 
modularity violations [48]), and UML conformance checking 
tools, how can we account for the error in measurement 
inherent in the various tools? 

• We are currently planning on developing custom tools. Would it 
be better to rely upon existing, though limited in functionality, 
tools? For example, several tools developed to detect code 
smells and anti-patterns only find a handful of the known 
types.  

3. BACKGROUND AND RELATED WORK 

3.1 Design Pattern Evolution 
Design patterns were widely introduced by Gamma et al. [17], and 
represent abstract definitions of agreed upon design solutions to 
commonly recurring problems in software development. 



Design patterns represent a form of micro-architecture within a 
software project, and thus, are also subject to evolutionary 
disharmonies. However, said disharmonies can be more readily 
studied, but few empirical studies of design pattern evolution and 
decay exist in the literature. 

In order to study design pattern realizations a means to specify a 
pattern is necessary. Various design pattern languages have been 
proposed [15][4][7], and although some are visual and some 
textual, their intent is similar –a higher level of representational 
abstraction. Yet, although the representational aspects may be well 
understood, the specification of realizations that are conformant to 
their intended design remains a hard problem. 

3.2 Software Decay and Aging 
Software decay is a specific form of software evolution. When a 
system has evolved such that it becomes “harder to change than it 
should be” [13], then it is said to have suffered from decay. Another 
phenomenon, identified by Parnas [39] that complements software 
decay is software aging. It describes how changes in a software 
system’s environment can reduce the overall value of software.  

Several studies have been conducted on software decay and aging, 
as well as on the rejuvenation of software as a means to circumvent 
the effects of these phenomena [21][22][47][13][38]. Specific types 
of software decay have been identified, such as the code smell 
identified by Fowler et al. and the anti-pattern identified by Brown 
et al. These and other types of software decay and aging recently 
have fallen under the umbrella of technical debt (see section 3.2.2). 

3.2.1 Design Pattern Decay 
Izurieta and Bieman [24] identified a new type of software decay 
known as design pattern decay. Design pattern decay has been 
primarily studied by Izurieta and Bieman [24][25][26], Izurieta and 
Schanz [42] and Izurieta [23]. Initially, Izurieta [23] identified two 
distinct categories of design pattern decay: design pattern grime 
and design pattern rot. Of these two types, empirical studies have 
only confirmed the existence of grime. Grime was initially 
subdivided into three disjoint categories: class grime, modular 
grime, and organizational grime. This initial taxonomy is depicted 
in the top portion of Figure. 1. 

Seminal work by Izurieta [23] found that pattern realizations tend 
to accumulate artifacts that obscure the intended use of patterns. 
Empirical studies further showed that, of the three types of grime, 
modular grime was the most significant [25]. Based on this, Schanz 

1 http://www.osgi.org 

and Izurieta [42] further expanded a taxonomy of modular grime 
by subdividing the original classification into six disjoint types of 
grime. They conducted a series of empirical studies across open 
source systems in order to validate the existence of these types of 
grime. This extended taxonomy (lower portion of Figure 2) was 
based on properties of class coupling identified by Briand et al. [5]. 
Modular grime was hierarchically subdivided by the strength, 
scope, and direction of coupling [42].  

Further empirical studies on grime have shown implications in the 
area of testing [25]. Based on this work Izurieta et al. [28] indicated 
that the technical debt landscape should include design pattern 
decay along with other types of design defects, such as code smells, 
anti-patterns, modularity violations, and certain lower level code 
issues that affect design patterns. 

3.2.2 Design Pattern Coupling 
Design pattern coupling was initially studied by McNatt and 
Bieman [33]. Their goal was to identify how often pattern 
realization coupling occurs and to investigate the benefits of design 
pattern coupling. They found that pattern couplings frequently 
occur, and that typical pattern couplings were of the intersection 
type (based on use dependencies between pattern realizations). 

Bieman and Wang [3] examined the effects of pattern coupling. 
They found that couplings tend to introduce dependencies which 
can increase the fault proneness and lower the adaptability of the 
end product, and that couplings based on association (persistent 
couplings) are more likely to be change prone and exhibit higher 
coupling (leading to a reduced modification stability). 

3.2.3 Technical Debt 
Technical debt is a metaphor originally described by Cunningham 
[11] as a way of explaining the need to restructure software through 
a financial metaphor. Technical debt was later mentioned by both 
Fowler et al. [14] as an argument towards the benefits of refactoring 
as a means of reducing technical debt. Today, the agile community 
views the management of known and unknown technical debt items 
as first class objects that once identified, should be tracked (over 
their lifetime) as a part of a combined backlog [18]. For a deeper 
exploration of recent research, we refer the reader to a 
comprehensive multi-vocal literature review by Tom et al. [46]. 

3.3 Current Research Gaps 
The management of design pattern decay forms an important 
component, in the management of software aging and technical 
debt, which warrants further research. The following is a list of 
research gaps that have been identified in this area: 

• Grime Taxonomy – Further exploration of organizational and 
class grime types is necessary. Initial studies into these types 
of grime have not yielded any significant results, but unlike 
modular grime, the taxonomy for these types has never been 
fully developed. Furthermore, the increasing use of 
modularity frameworks, such as OSGi1, [29] indicates that 
these types of grime will become more prevalent. 

• Pattern Coupling – Patterns are often used in conjunction with 
other patterns [33][3]. The exploration of couplings between 
patterns, and the effects of these couplings on grime requires 
further investigation. 

• Quality – The impact of grime on the quality of both software 
products and pattern realizations has only been subject to 
limited study [25][23][26]. 

 
Figure 1. Extended grime taxonomy, which focuses on 

modular grime. 
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• Technical Debt – Current research has looked into how grime 
plays a part in the technical debt landscape [49]. The effect of 
grime on the technical debt value of a software product and 
pattern realizations has yet to be studied. 

• Relationships – The notion that different subtypes of grime can 
be interrelated or that subtypes of grime and design defects 
types can be related is another area of study still left 
untouched. 

• Automation – The ability to detect grime is a manual and time-
consuming process. In part, this is due to a lack of detection 
tools required to identify instances of grime embedded in 
design patterns realizations. 

• Empirical Studies – Only a small body of work concerning 
empirical inquiry of design pattern evolution and decay has 
been conducted. Of these studies only a very small selection 
of systems have been studied. We expect to expand on the 
number of case studies that address design pattern specific 
issues across a diverse body of software in several languages. 

3.4 Proposed Contributions 
In this dissertation we propose the following contributions to 
address the gaps: 

• Comprehensive literature review covering design pattern grime 
and design pattern defects and their relationship to quality, 
other types of design defects, and software quality. 

• Using Marinescu’s notion of Detection Strategies [32] coupled 
with design pattern detection we plan to automate the 
detection of grime. 

• Using automated techniques to extract information over several 
versions of selected software projects to explore how grime 
develops in singular and coupled pattern realizations. 

• Development of a completed taxonomy of grime, including a 
refined taxonomy of class and organizational grime with 
enhancements to include design pattern coupling. 

• Evaluating a large collection of software (with multiple versions 
and from multiple languages) to confirm the existence of 
grime. 

• Exploring methods to calculate the technical debt, pattern 
adaptability, refactoring difficulty, and refactoring complexity 
of grime. 

• Defining and developing semi-automated and automated 
methods to refactor patterns in the face of grime accumulation. 

• Development of a defect injection method to study the effects of 
design defects on software in a controlled manner. 

• Connection between design pattern grime, technical debt, and 
software quality. 

4. OBJECTIVES 
This section identifies the research objectives and underlying 
hypotheses. In order to further develop the objectives into testable 
hypotheses and identify a set of research questions, we followed the 
Goal Question Metric (GQM) method [2]. Each object is identified 
by a research goal (RG) followed by a set of research questions 
(RQ). 

4.1 Research Objectives 
RG1 – Analyze pattern realizations for the purpose of detecting 

grime with respect to precision and recall from the perspective 
of a software system in the context of open source software 
projects. 
RQ1.1 – What is the precision [1] of the grime detection 

algorithms for each type of grime? 

RQ1.2 – What is the recall [1] of the grime detection 
algorithms for each type of grime? 

RQ1.3 – What is the average number of grime instances per 
grime type discovered across all identified pattern 
realizations? 

RQ1.4 – What is the average number of grime instances per 
type per system? 

RG2 – Analyze pattern realizations for the purpose of tracking 
grime buildup with respect to the amount of grime from the 
perspective of several versions in the context of open source 
software projects. 
RQ2.1 – How does grime change over time? 
RQ2.2 – Which type of grime is more likely to occur as 

pattern realizations evolve?  
RQ2.3 – What relationships exist between pattern realization 

evolution and grime growth? 
RG3 – Analyze pattern realizations affected by grime for the 

purpose of identifying when refactoring is needed from the 
perspective of several system versions in the context of open 
source software projects. 
RQ3.1 – What refactoring combinations are needed to remove 

each type of grime? 
RQ3.2 – When is refactoring needed to return a pattern 

realization back to the original pattern? 
RQ3.3 – When is refactoring needed to change a pattern 

realization to a different pattern (refactoring to other 
patterns)? 

RQ3.4 – At what point does a pattern realization no longer 
resemble the intended design pattern? 

RQ3.5 – At what point is refactoring away from patterns 
necessary? 

RG4 – Analyze pattern realizations for the purpose of evaluation 
with respect to susceptibility to grime buildup from the 
perspective of grime in the context of open source software 
projects. 
RQ4.1 – Which patterns or pattern families are more 

susceptible to grime accumulation? 
RQ4.2 – Which patterns or pattern families need to be 

watched more closely by development teams? 
RG5 – Analyze pattern realizations for the purpose of identifying 

intra- and inter-relationships with respect to pattern grime 
from the perspective of a grime taxonomy and other defect 
types (i.e., code smells, anti-patterns, modularity violations, 
etc.) in the context of open source projects. 
RQ5.1 – What are the relationships between the different 

types of grime? 
RQ5.2 – What relationships exist between grime and code 

smells? 
RQ5.3 – What relationships exist between grime and anti-

patterns? 
RQ5.4 – What relationships exist between grime and 

modularity violations? 
RG6 – Analyze pattern realizations for the purpose of evaluating 

technical debt with respect to grime from the perspective of 
several system versions in the context of open source projects. 
RQ6.1 – What effect does each type of grime have on 

technical debt of an entire software system? 
RQ6.2 – How can we calculate the technical debt associated 

with the grime buildup in a pattern realization? 
RG7 – Analyze pattern realizations for the purpose of evaluation 

with respect to grime form the perspective of design pattern 
couplings in open source software. 
RQ7.1 – What is the precision and recall of pattern realization 

coupling detection algorithms? 



RQ7.2 – What is the precision and recall of pattern coupling 
grime detection algorithms? 

RQ7.3 – Which pattern combinations, as identified by 
Gamma et al. [17], are more susceptible to grime 
buildup? 

RQ7.4 – Which type of grime is more likely to build up in 
coupled design patterns? 

RG8 – Analyze pattern realizations afflicted with grime for the 
purpose of evaluation with respect to maintainability and 
adaptability from the perspective of design pattern realizations 
in the context of open source software projects. 
RQ8.1 – What is the effect of each type of grime on the 

adaptability of a pattern realization? 
RQ8.2 – What is the effect of each type of grime on the 

maintainability of a pattern realization? 

4.2 Important Metrics 
We have identified several metrics that will be used for the various 
experiments described in section 5. 

M1. Grime Count (GC) – The total amount of grime accumulated 
within a pattern realization. This metric will be used in 
RQ1.1—RQ1.4, RQ2.1, RQ2.2, RQ4.1, RQ4.2, RQ6.1, 
RQ6.2, RQ7.1 and RQ7.2. 

M2. Refactoring Count (RCT) – A count of the number of 
refactorings needed to remove grime buildup within a pattern 
realization. This metric will be used in RQ3.1—RQ3.5, RQ 
6.1 and RQ6.2. 

M3. Refactoring Difficulty (RD) – A measure of the difficulty of 
refactoring a design defect. This metric will be used in 
RQ3.1—RQ3.5, RQ6.1 and RQ6.2. 

M4. Grime Susceptibility (GS) – A measure of the probability that 
a pattern realization will accumulate grime. By grouping 
pattern realizations, in a yet to be determined fashion, and 
counting the amount of grime, we can identify which members 
of the group are more susceptible to grime. This metric will be 
used in RQ4.1, RQ4.2, and RQ7.3. 

M5. Pattern Coupling Count (PCC) – A measure of the number of 
distinct pattern realizations that another pattern realization is 
coupled to. This metric will be used in RQ7.1—RQ7.4.  

M6. Technical Debt (TD) – a measure of the cost required to 
remove all technical debt principle in a particular software 
system. This metric will be used in RQ6.1 and RQ6.2 

M7. Grime Growth (GG) – A measure of the change in grime from 
a specific pattern realization over the evolution of the system. 
This metric will be used in RQ2.1—RQ2.3, RQ6.1, RQ6.2, 
RQ7.1—RQ7.4, RQ8.1 and RQ8.2. 

M8. Pattern Adaptability (PA) – A measure of the ability of a 
pattern realization to adapt to future requirements. It will be 
measured using the surrogate metric: Architecture 
Adaptability Index (AAI) [44]. This metric, AAI, will be used 
in RQ8.1 and RQ8.2. 

M9. Pattern Maintainability (PM) – A measure of the 
maintainability of a design pattern. We will use the following 
surrogate metrics for maintainability as indicated by Li and 
Henry [31]: From the Chidamber and Kemerer [9] metrics 
suite we will use Depth of Inheritance Tree (DIT), Number of 
Children (NOC), Lack of Cohesion in Object Methods 
(LCOM), Weighted Methods per Class (WMC) and Response 
For Class (RFC). From Li and Henry [31] we will use Data 
Abstraction Coupling (DAC), Message Passing Coupling 
(MPC) and Number of Methods (NOM). These metrics will 
be used in RQ8.1 and RQ8.2. 

M10. Grime Severity (GS) – A measure of the severity of an 
instance of a specific form of grime. These metrics will be 
used in RQ6.1, RQ6.2, RQ8.1 and RQ8.2. 

4.3 Working Hypotheses 
H1. Accurate detection of grime is achievable with automated 

detection strategies. 
H2. There exists evidence to support the accumulation of modular, 

class, and organizational grime in open source systems 
H3. There exists a point when the grime buildup within a pattern 

realization indicates that the pattern realization must be 
refactored to its original intent, to another more applicable 
pattern, or away from patterns in general and towards alternate 
good designs. 

H4. Pattern susceptibility to each type of grime is related to the type 
of pattern (behavioral, creational, or structural) or structural 
meta-pattern [40] a pattern realization belongs to. 

H5. Relationships and Grime 
H5.1. Grime is distinguishable through the different types of 

relationships that exist between grime types. 
H5.2. Grime is distinguishable through the different types of 

relationships that exist between grime types and other 
non-pattern related design defects. 

H6. Grime and Technical Debt: 
H6.1. Grime has a negative effect on the technical debt of a 

software system as a whole. 
H6.2. Grime has a negative effect on the technical debt of a 

pattern realization. 
H7. Patterns tend to be used together and this use makes these 

coupled pattern realizations more susceptible to grime 
buildup. 

H8. Each type of grime has a significant negative impact on the 
maintainability and adaptability of pattern realizations. 

5. METHODS 
This section describes the underlying research methods used to 
further understand grime and its effects. 

5.1 Data Collection 
The data collection process and framework is depicted in Figure 2. 
Depending on the study approach (controlled experiment or case 
study) we can begin in one of two ways. Case studies will be carried 
out in selected groups of open source projects that are 
representative of different programming languages. In a controlled 
experiment, we utilize a model injector (a tool designed to 
introduce software artifacts into a model of the software) to both 
create a model and inject the grime (or other design defects) entities 
under study. Since the model is a representation of the source code, 
once the model is available, product measures are extracted from 
the model and both the model and metrics are placed into the 
database. For the case studies, we also simultaneously collect 
pattern realization information using design pattern detection 
methods, which are then manually verified. Upon verification, the 
pattern realization information is stored in the database. 

The design information now stored in the database is used to collect 
additional data. Simultaneously, we extract design defect 
information (such as code smells, anti-patterns, and modularity 
violations), identify and extract grime information, and identify 
coupled pattern realizations. Once all this information is collected, 
it is stored in the database. In the final step, design information is 
used to extract response measures that are in turn used in the 
analysis phase. The following subsections provide greater detail on 
the process and tools which makeup the data collection framework. 



5.1.1 Design Patterns Studied 
The proposed study will encompass pattern realizations, which are 
either injected or found through detection methods, as defined by 
Gamma et al. [17]. 

5.1.2 Software Studied 
The proposed study evaluates the software systems composed of 
several open source systems. We intend to develop a collection of 
open source software developed in the JavaTM, C++, C#, and Ruby 
programming languages using the method developed by Tempero 
et al. [45]. 

Every available software version in all available systems contained 
in the corpus will be evaluated. The selection of systems to be 
included in the evaluation depends on the research goal being 
addressed. Some goals require a single system and others a 
complete evolutionary analysis of multiple versions and possibly 
multiple systems.  

5.1.3 Design Pattern Detection 
In order to evaluate grime, we must first detect pattern realizations 
in their setting of use. In order to reduce the amount of work 
required to manually identify and validate pattern realizations, we 
are investigating design pattern detection algorithms that will be 
directly embedded into the framework. 

2 http://www.uml.org 

5.1.4 Parser and Metrics Measurement 
In order to detect both grime and other design defects we have 
constructed a parser using the SableCC framework [16]. We have 
also implemented several metrics [37][35][34][32][30] that have 
been shown to detect different types of grime as well  as various 
other defects (i.e., code smells, anti-patterns, and modularity 
violations). Once the structural representations and metrics have 
been collected, they are stored in the database. 

5.1.5 Design Pattern Grime Detection 
There exists no automated method for detecting pattern grime 
within a software system. We are exploring the combination of 
RBML-UML conformance checking algorithms [43] and 
algorithms based on Marinescu’s detection strategies [32] to 
develop an automated tool for identifying grime instances. The 
output of this tool will identify grime instances associated with a 
known pattern realization. Identified grime instances will be stored 
in the database. It should be noted that if automated or semi-
automated methods are not fruitful in identifying grime, manual 
detection can still be utilized without hindering the overall process 
but at a significant cost in time. 

5.1.6 Design Defect Detection 
Utilizing the same underlying technology as the grime detector, we 
will include detection strategies for code smells, anti-patterns, and 
other design defects. These detection strategies are based on the 
work of Marinescu [32], Lanza and Marinescu [30], Moha et al. 
[34][35][36], Munro [37], and others. These detection strategies 
utilize the metrics and structural information stored in the database. 
The goal is to extract and store in the database detected design 
defects associated with a pattern realizations and its surrounding 
classes. 

5.1.7 Design Pattern Coupling Detection 
We will analyze the structural coupling between pattern 
realizations. These pattern couplings are detected by analysis of 
shared architecture between pattern realizations in a given 
component of software. The information for this process is 
extracted from the database and analyzed by a form of pair-wise 
comparison between realizations. 

5.1.8 Software Model and Model Injection 
We will utilize a meta-model of a software project that facilitates 
information extraction from a common data structure. The model 
uses a graph that combines the semantics of UML2 class and 
sequence diagrams with that of call-graphs. This model can either 
be extracted from an abstract syntax tree provided by a parser or 
can be generated programmatically. The model can be used directly 
or design defects (such as grime, code smells, etc.) and pattern 
realizations can be injected into the model based on formal 
descriptions (provided via XML3 and RBML [15] descriptions). 

 

5.2 Research Approach 
The research approach selected depends on the research question, 
but it can be an experiment or case study. 

Initially we will conduct a systematic literature review to support 
the development of the grime taxonomy as well as to investigate 
existing approaches towards automating detection of design defects 

3 http://www.w3.org/TR/2006/REC-xml11-20060816/ 

 
Figure 2. Depiction of the data collection process and 
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such as code smells. This literature review will not only investigate 
academic sources but industry sources as well. 

RQ1.1 and RQ1.2 will be conducted as an experiment to evaluate 
the detection strategies used to identify grime in pattern 
realizations. The experiment will be conducted by executing 
detection algorithms across generated and grime injected pattern 
realizations. We will then calculate the precision and recall of each 
algorithm. We will compare these results against pure random 
assignment in a 10-fold cross validation [1] approach. The data will 
be analyzed using a student’s t-test for paired data [41]. RQ1.3 and 
RQ1.4 will be investigated by using these tested detection 
algorithms to identify grime in the collected software projects. 

RQ2.1—RQ2.3 will be evaluated through the use of a multiple case 
study design by observing the evolution of grime in pattern 
realizations across the different versions of each software project 
under study. We will look for statistically significant correlations 
between time and changes in different types of grime. 

RQ3.1—RQ3.5 will be evaluated using a controlled experiment 
and a multiple case study. The controlled experiment will evaluate 
refactoring strategy effectiveness, until we have identified 
refactoring strategies to remove each type of grime (RQ3.1). We 
will also vary the amount of injected grime to determine the effect 
on PA, RD, and RC (RQ3.2—RQ3.5). We are looking to develop 
a statistical model (mathematical model which describes the 
behavior of an object under study using random variables [41], in 
this case grime and refactoring), evaluated using the ANOVA 
method [41], that can assess alternatives and provide decision 
support before refactorings are performed. Once, the statistical 
models have been evaluated we will use them to evaluate pattern 
realizations found within the available software projects. 

RQ4.1 and RQ4.2 will be evaluated using a multiple longitudinal 
case study approach across all versions of available software. For 
each type of pattern (creational, structural, behavioral or meta-
pattern type) we will extract grime affected pattern realizations and 
evaluate the pattern’s susceptibility to grime accumulation. We will 
evaluate results using a one-way ANOVA model. 

RQ5.1—RQ5.4 will be evaluated using a controlled experiment 
and a multiple case study approach across all versions of available 
software. The controlled experiment will be used to validate the 
detection algorithms (similar to the approach used in RQ1.1 and 
RQ1.2). The case study approach will collect information regarding 
code smells, anti-patterns, modularity violations, and grime with 
corresponding source code locations within the software. We will 
then use the collected instances of grime and design defects to 
determine if any relationships exist between the different types of 
grime, and to determine if any relationships exist between types of 
grime and the other design defects. Once identified, we will 
evaluate if there is statistical evidence that suggests whether defect 
type relationships are meaningful. 

RQ6.1 will be conducted as a controlled experiment. We will 
generate a system with pattern realizations injected with grime. 
Prior to and after each injection we will measure the technical debt 
associated with the system. We can then identify the effect that each 
type of grime has on technical debt. Along with the evaluation of 
the impact on TD we will also consider the evaluation of grime 
severity and its relationship to TD. The analysis of the effect of each 
type of grime on technical debt will be conducted through the use 
of an ANOVA model and pair-wise comparison. We will then 
conduct the multiple case study described in RQ6.2 to validate the 
statistical models. 

RQ7.1 and RQ7.2 will be evaluated using a controlled experiment. 
The analysis is similar to RQ1.1 and RQ1.2. RQ7.3 and RQ7.4 and 
will be evaluated using a multiple case study that cross cuts the 
available software projects. The case study will investigate grime 
buildup in pattern couplings and identify coupled patterns that 
appear more susceptible to grime. The goal is to develop statistical 
models, evaluated using ANOVA, of how coupling affects non-
coupled grime and grime susceptibility to identify which pattern 
coupling-based grime types, patterns are more susceptible to. 

RQ8.1 and RQ8.2 will be evaluated using a controlled experiment 
and a multiple case study approach. For each pattern realization the 
PA, PM, and GG metrics will be measured before and after grime 
injection. As grime is introduced the change in PA and PM will be 
observed. We will then evaluate the change in PA and PM versus 
GG for statistically significant correlations. In the case studies we 
will be tracking grime to see if the relationship holds in actual 
software systems. We also expect to explore how grime and grime 
severity affects portions of the Quamoco[12] quality model by 
specifically focusing on maintainability and adaptability as 
measured by PM and PA. 

6. THREATS TO VALIDITY 
There are several threats to the validity of the proposed study, 
which are based on the classification scheme of Cook, Campbell 
and Day [10] and of Campbell et al. [8]. We have identified threats 
to internal and external validity, and seek advice to minimize 
construct validity, before we setup the experiments. 

There is a potential threat to internal validity due to other design 
defects overlapping with grime. In order to control for this we 
conduct experiments to determine relationships between other 
design defects and grime. Similarly, a potential threat can occur due 
to overlap between specific types of grime. Although considered to 
be disjoint within each type (modular, class, and organizational) 
there may be overlap between types. To control for this we will 
conduct experiments to evaluate relationships between types of 
grime. 

Given that these studies focus on open source software, there are 
two threats to external validity. The first is the exclusive use of open 
source software. We can only control for this threat by including 
studies on commercial software, but this is left to future study.  

The second threat to the external validity is the total number of 
patterns and pattern realizations studied. In previous studies on 
grime have focused on a small number and types of design patterns. 
Here we will use a large number of realizations of each type of 
pattern and we are looking into the entire catalog of the Gang of 
Four patterns, which alleviates the issue that only a small subset of 
well-known patterns is likely to have grime. Because of the threats 
we cannot generalize beyond those systems studied. 

7. CONCLUSIONS 
In this paper we described a set of empirical studies to further 
explore and understand the phenomenon of design pattern grime. 
We intend to not only explore the accumulation of grime via pattern 
realization evolution but to also explore the intra-relations of grime 
types as well as the inter-relations between grime types and other 
design defects, which will help further the understanding of how 
grime affects technical debt. 

The current status of this research is in the framework development 
phase. Based on our previous work we have developed the 
underlying metrics, model, and parsing tools [20] and we have 
conducted initial research into the development of automated 



refactoring techniques [19]. We have also begun work focusing on 
the uncertainty of technical debt and other measures [27]. Presently, 
we are beginning work towards extracting design pattern 
realizations and pattern coupling information from the collection of 
open source projects and completing the grime taxonomy. 
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