
Grammar Normalization to Support Automated
Merging

Rosetta Roberts and Isaac Griffith
Empirical Software Engineering Laboratory

Informatics and Computer Science
Idaho State University
Pocatello, Idaho 83208

Email: {roberose@isu.edu, grifisaa@isu.edu}

Abstract—Introduction: Current solutions to multilingual
parsing, for programming languages, are flawed. Current im-
plementations are either limited in scope or difficult to develop
and maintain. The development of multilingual parsers requires
the combination of multiple base grammars, leading to a main-
tenance headache as these grammars evolve. Such a repetitive
process should be automated. Objective: Develop an approach
to normalize a grammar in such a way that the grammar is
equivalent to the original, but in a state which reduces the
effort to merge grammars by reducing ambiguity in automated
merge decision making. Methods: This normalization procedure
transforms grammars such that each production is one of two
forms. Additionally, the normalized grammars maintain a set
of additional constraints we identified as useful. A pilot study
demonstrating this approach was conducted on three existing
grammars. Results: The normalization algorithm was shown to
correctly normalize the three grammars. Conclusions: This work
presents a normalization method towards easing the development
of automatically merging programming language grammars.

Index Terms—Grammar Normalization, Software Language
Engineering

I. INTRODUCTION

It has become more common in the software industry to
write applications in multiple programming languages. Such
multilingual software systems present tool developers with ad-
ditional, difficult challenges. One such challenge concerns the
development of parsers supporting these tools [1]. Currently,
for each supported language, tools use either an ecosystem
restricted intermediate representation (IR) based approach or
a multiple parser approach.

Though the multiple parser approach is the least limited,
it does incur a high maintenance cost [2]. To alleviate this,
researchers have turned to the development of techniques
for multilingual parsing. One such method uses specially
constructed Island Grammars [3]. These Island Grammars
identify only the portions of documents that are of interest
to the application, while able to function in the presence
of multiple programming languages. However, this requires
manually combining portions of grammars.

The manual combination of grammars necessary for the cre-
ation of a multilingual Island Grammar is time-consuming and
prone to a maintenance headache whenever the base language
grammars evolve. The obvious answer to such a problem is the
development of an automated technique to merge grammars.

Unfortunately, this leads to another problem, which is the
focus of this research. Prior to merging, a grammar must
be constrained such that its contained productions and each
production’s contained symbols are arranged in a consistent
manner equivalent to the original grammar, allowing for
unambiguous merging decisions. This problem has led to the
formation of the following research goal (RG):

RG Develop an approach to normalize a grammar in such
a way that the grammar is equivalent to the original,
but in a state which reduces the effort to merge
grammars by reducing ambiguity in merge decision
making.

Apropos this goal, we have designed an algorithmic procedure
of normalizing grammars to a form suitable for automated
merging.

This paper presents this approach and is organized as
follows. Sec. II discusses the theoretical foundations related
to this work and the notation this paper uses. Sec. III details
the design of the normalization procedure, the meta-model
used to represent grammars, and the algorithms used to
perform the normalization. A pilot study of the normalization
process across three grammars is described in Sec. IV. Sec. V
describes the results of this pilot study. Sec. VI describes the
limitations of this discussion and the threats to the validity of
the pilot study. Finally, Sec. VII concludes this paper with a
summary and description of future work.

II. BACKGROUND

Context-free grammars (CFG) are defined by G =
(V,Σ, P, S) [4]. V is the set of non-terminal symbols, Σ is
the set of terminal symbols, P is the set of productions, and
S ∈ V is the start symbol [4]. CFGs can be represented using
Backus Naur Form (BNF) grammars [5]. Each BNF grammar
is composed of a set of productions and a start production.
Each production is written as Φ → R where Φ is a non-
terminal symbol and R is an expression representing a rule.
Each expression can be either a symbol, the empty string (ε),
or expressions combined with an operator. In BNF, there are
two basic operators concatenation (‘ ’) and alternation (|) [5].

The concatenation operator is represented by concatenating
the operands (e.g. 〈A〉 a). The alternation operator is repre-
sented by | separating its operands (e.g. 〈A〉 | a). Parentheses

are used to delimit expressions to reduce ambiguity and
improve readability (e.g. 〈A〉 (a | ε)). Uppercase letters
enclosed within angle brackets denote non-terminal symbols
while lowercase symbols in monospace font denote ter-
minal symbols.

BNF grammars, though expressive, tend to be cumbersome
[6]. Thus, others have added various operators to BNF, forming
variants collectively known as Extended Backus Naur Form
(EBNF) [7]. EBNF both includes additional operators while
redefining existing operators. Specifically, EBNF shows con-
catenation using the comma (,) and includes the following:
the optional operator ([...]), which indicates that surrounded
symbols are required 0 or 1 times, the repetition operator
({...}), which indicates that surrounded symbols are required
0 or more times. Finally, parenthesis surrounding a set of
symbols denotes a group. Though EBNF is a more concise
representation of a grammar than BNF, neither are typically
used in practice [6].

In practice, grammars are typically represented by a modi-
fied form of EBNF in a language-specific to a parser generator
tool such as ANTLR [8], yacc [9], bison [10], JavaCC 1, and
many others. Beyond these forms of grammars, there are tree-
based grammar description languages such as SDF [11] and
TXL [12], as well as methods to describe grammars using
languages such as XML [13].

As noted in Sec. I, Island Grammars are one approach to
the development of multilingual grammars. Island Grammars
extend the definition of a CFG. Thus, an Island Grammar
is defined as G = (V,Σ, P, S, I) [14]. An Island Grammar
modifies a base grammar using the set I . This set contains
productions of interest (also known as islands) used to extract
knowledge from source files. All other productions reduce to
what is colloquially known as water. This reduction occurs
by having a "catch-all" production to match any non-interest
production [14].

Normalization of grammars is necessary for efficient pro-
cessing [15]. To the best of the authors’ knowledge there
are currently no known normalization procedures to facilitate
grammar merging. Though, a well known approach to normal-
ization is the Chomsky Normal Form [16]. In this form, all
productions are one of the following:

〈A〉 → 〈B〉 〈C〉
〈A〉 → a
〈S〉 → ε

That is, each production’s rule is either two non-terminal
symbols, a terminal symbol, or the empty string (only for the
start production). Furthermore, a production may have multiple
definitions rather than be written in a more concise form using
the alternation operator. Although this form provides a useful
simplification [15], it is not appropriate for merging as it does
not account for several issues that can lead to ambiguous
results when merging.

1https://javacc.github.io/javacc/

III. APPROACH

This section details the design, meta-model, and implemen-
tation of a normalization algorithm to simplify the automated
merging of grammars. We begin by laying out the foundations
of the normalization.

A. Normalization Foundations

The automated merging of grammars requires the grammar
to be normalized to an equivalent but constrained form. The
primary constraint restricts each of the productions of a
grammar to one the following two forms:

Form1 The rule of the production only uses the concatenation
operator to concatenate symbol, e.g. 〈A〉 → 〈B〉 b

Form2 The rule of the production only uses the alternation
(|) operator to combine symbols or the empty string,
e.g. 〈A〉 → 〈B〉 | b | ε |

In addition to the primary constraint, there are three secondary
constraints, as follows. (i) Each symbol in a rule cannot
have the same form as its containing rule. (ii) Unit rules
are not permitted (except for the start symbol producing a
single terminal symbol). (iii) No pair of productions may
have identical right-hand sides. The constraints both identify
and resolve five separate issues. These issues revolve around
equivalent ways of writing rules that make it difficult for
a merging procedure to detect and then combine similar
productions across grammars.

The first issue is the spurious usage of the empty string. An
example of this would be the production 〈A〉 → 〈B〉 ε b. The
empty string in the middle of the expression is unnecessary.
The second problem arises from the associative property of the
concatenation and alternation operators. For example, produc-
tions S1 and S2 are equivalent in the following productions.

〈S1〉 → a 〈B〉
〈B〉 → b c
〈S2〉 → 〈A〉 c
〈A〉 → a b

This is mitigated by constraint (i) above. The commutative
property of the alternation operator causes the third problem.
For example, the following two productions are identical, but
are represented differently:

〈A〉 → a | b | c
〈A〉 → c | b | a

To remove this ambiguity, the domain model uses a set
container for the terms, which eliminates the problem by
removing the ordering from our representation. The fourth
issue is the use of unit productions. A unit production is one
in which the right-hand side is a single symbol. Here is an
example:

Fig. 1. Class diagram of grammar meta-model.

〈A〉 → 〈B〉
〈B〉 → a b c

In almost all cases, this is better represented by removing the
unit production. The one exception is when the start symbol
directly produces a single terminal symbol. The final issue
concerns duplicate productions. Duplicate productions result
in multiple symbols producing the same rule. Replacing these
multiple symbols with the same symbol can enable other
simplifications. In the following example, 〈A〉’s production can
be reduced to a unit rule by replacing the symbols 〈B〉 and
〈C〉 with a single symbol:

〈A〉 → 〈B〉 | 〈C〉
〈B〉 → a b c
〈C〉 → a b c

This is mitigated by constraint (iii) above.

B. Domain Model

The meta-model, depicted in Fig. 1, used to represent
grammars, mirrors the structure of a combination of BNF and
EBNF. As depicted, a Grammar is composed of one or more
productions and a non-terminal start symbol. Each production
contains both a non-terminal symbol (the left-hand side) and
a rule (the right-hand side).

A rule can be one of two primary types, an Operand or
an Operator. The Operand subtree further divides into either
the Empty string operand or the Symbol. Symbols further
refine into NonTerminals and Terminals. Terminals further
refine into string Literals, CharRanges which represent a range
of characters, CharClass which specifies a character class
similar to regular expressions, and finally the dot (.) which
can represent any character. The refinements to the Terminal
subtree are designed to support the inclusion of ANTLR [8]
features.

In addition to the operands, the meta-model includes sev-
eral operators. Operators supporting BNF are the Concat
and Alternation operators. the alternation and concatenation

TABLE I
ANTLR FEATURES NOT IN BNF

construct example description

+ a+ one or more repetitions
∗ a∗ zero or more repetitions
∼ ∼ (a|b) not one of a set of characters
? a? optional
‘.‘ ‘.‘ any character
. . . a . . . z a character range
\p{} \p{Symbol} a character class

operators are not binary operators, but rather n-ary operators.
The alternation operator aggregates its operands in a set object.
Additionally, the meta-model includes the Star (*) operator for
repetition of 0 or more and the Not (~) operator to represent all
but a set of characters. These latter two operators are borrowed
from ANTLR and help support both the use of ANTLR and
EBNF grammars.

ANTLR also includes the one or more repetition (+) and
optional (?) operators, as shown in Table I. When an ANTLR
grammar is parsed, these operators are substituted with equiv-
alent expressions. Expressions of the form A+ are replaced
with A A∗, while expressions of the form A? are replaced
with (ε|A). A denotes an arbitrary expression. After parsing,
every application of the * operator is replaced with a new
production. Expressions of the form A∗ are replaced with the
production 〈A〉 → A 〈A〉 | ε.

C. Normalization Algorithm

The approach for normalizing grammars is depicted in
Algorithm 1. The Algorithm’s primary component is the
procedure Normalize (lines 1-10). This procedure takes as
input, an unnormalized grammar represented as an instance
of the meta-model, and produces a normalized grammar
equivalent to the input grammar as output. Furthermore, the
output grammar also maintains the constraints outlined in Sec.
III-A. This procedure repeatedly executes six steps until the
grammar stabilizes (the point at which the grammar no longer
changes). These six processes are: (i) eliminating unused rules,
(ii) simplifying productions, (iii) merging equivalent rules,
(iv) eliminating unit rules, (v) expanding productions, and
(vi) collapsing compatible productions. The remainder of this
subsection is devoted to describing these steps.

The first step, embodied in function ElminateUnusedPro-
ductions (lines 11-15), removes all productions not enumerable
from the start production via a depth-first traversal of the
grammar. The second step, embodied in function SimplifyPro-
ductions (lines 16-21), simplifies productions by removing
unnecessary empty strings (ε) that are operands of the concate-
nation operator. The third step, embodied in function MergeE-
quivProductions (lines 22-28), replaces productions that have
identical rules with a single production. This function replaces
symbols by scanning the entire grammar and then replacing
each old symbol with the new symbol. The new symbol’s name

Algorithm 1 Normalization
1: procedure NORMALIZE(G)
2: repeat
3: G ← ELIMINATEUNUSEDPRODUCTIONS(G)
4: G ← SIMPLIFYPRODUCTIONS(G)
5: G ← MERGEEQUIVPRODUCTIONS(G)
6: G ← ELIMINATEUNITPRODUCTIONS(G)
7: G ← EXPANDPRODUCTIONS(G)
8: G ← COLLAPSEPRODUCTIONS(G)
9: until UNCHANGED(G)

10: return G
11: function ELIMINATEUNUSEDPRODUCTIONS(G)
12: W ← G.V ∩ DEPTHFIRSTSEARCHFROM(G.S)
13: Q← {(w,G.P (w)) | w ∈W}
14: H ← (W,G.Σ, Q,G.S)
15: return H
16: function SIMPLIFYPRODUCTIONS(G)
17: for all o ∈ OPERATORNODES(G) do
18: if ISCONCATOPERATOR(o) then
19: for all {p ∈ OPERANDS(o) | p = ε} do
20: REMOVEOPERAND(p)
21: return G
22: function MERGEEQUIVPRODUCTIONS(G)
23: for all {p1, p2} ∈ UNORDEREDPAIRS(G.P) do
24: if RULE(p1) = RULE(p2) then
25: ρ← COMBINESYMBOLS(p1, p2)
26: G.REPLACEUSES(p1, ρ)
27: G.REPLACEUSES(p2, ρ)

28: return G
29: function ELIMINATEUNITPRODUCTIONS(G)
30: for all p ∈ G.V \ {G.S} do
31: if ISSYMBOL(RULE(p)) then
32: REPLACEUSES(p,RULE(p))
33: if ISNONTERMINALSYMBOL(RULE(G.S)) then
34: REPLACEUSES(G.S,RULE(G.S))
35: return G
36: function EXPANDPRODUCTIONS(G)
37: for all p ∈ G.P do
38: for all o ∈ NONROOTOPNODES(RULE(p)) do
39: G.REPLACEWITHNEWRULE(o)
40: return G
41: function COLLAPSEPRODUCTIONS(G)
42: for all (p1, p2) ∈ ORDEREDPAIRS(G.P) do
43: o1 ← ROOTOPERATOR(p1)
44: φ2 ← SYMBOL(p2)
45: if φ2 ∈ CHILDREN(o1) then
46: o2 ← ROOTOPERATOR(p2)
47: if ASSOCIATIVE(o1, o2) then
48: o1.REPLACECHILD(φ2,CHILDREN(o2))

49: return G

combines the names of the old productions. The fourth step,
embodied in function EliminateUnitProductions (lines 29-35),

Fig. 2. Pilot study process.

removes all unit productions (excluding the start production).
Unit productions are first identified, and then symbols on
the left-hand side of each production are replaced with their
right-hand side symbols. The fifth step, embodied in function
ExpandProductions (lines 36-40), converts each production to
either Form1 or Form2. Each non-root operator node of the
expression tree of the rule is pulled into a distinct production.
The final step, embodied in CollapseProductions (lines 41-
49), combines associative operators. In the case of BNF
grammars, only the concatenation and alternation operators
are associative.

IV. PILOT STUDY

To evaluate the above approach, we performed a small
pilot study on three grammars selected from the ANTLR [8]
grammar repository2. The grammar selection criteria were as
follows: (i) selected grammars should be of varying sizes with
at least one grammar small enough to be easily inspected,
and (ii) grammars should be of different application. These
criteria led to the selection of the Brainfuck, XML, and Java™
grammars.

Brainfuck is an esoteric Turing-complete language notable
for its extreme simplicity, having only eight commands [17].
We chose this language because its grammar is minimal and
easily inspected. For similar reasons, we chose the more
complicated XML grammar. XML is commonly used for send-
ing information between applications [18] and for specifying
configuration files [19]. Finally, Java™ was selected for the
high likelihood it would need to be included as a base language
[20]–[22]. This language is significantly more complicated
than either Brainfuck or XML, as it is a widely used [23]
general-purpose programming language. This selection of lan-
guages meets our original criteria.

The pilot study process, as depicted in Fig. 2, follows the
enumerated flow. 1.) Each grammar is read in and processed to
form an instance of the meta-model depicted in Fig 1. 2.) The
system measures the number of productions [24] of the in-
stance and records this value. 3.) Once measured, the instance
is normalized using the process specified in Algorithm 1. 4.)
The Algorithm’s output grammar is measured, and the number
of productions recorded. 5.) Once the normalization process
completes, the system verifies that each production is either
of Form1 or Form2 and that it does not include unexpected
rules. 6.) Finally, the normalized grammar is output.

2https://github.com/antlr/grammars-v4

〈file〉 → 〈statement〉∗

〈statement〉 → 〈opcode〉 |
〈LPAREN〉 〈statement〉∗ 〈RPAREN〉

〈opcode〉 → 〈GT〉 | 〈LT〉 | 〈PLUS〉 |
〈MINUS〉 | 〈DOT〉 | 〈COMMA〉

〈GT〉 → >
...

Fig. 3. Brainfuck grammar before normalization. Definitions for the other
ops are omitted for brevity.

〈file〉 → 〈A〉 | ε
〈statement〉 → > | < | + | - | . | , | 〈B〉

〈B〉 → [〈file〉]
〈A〉 → 〈statement〉 〈file〉

Fig. 4. Brainfuck grammar after normalization. Symbols 〈A〉 and 〈B〉 are
symbols with auto-generated names.

V. RESULTS

The following paragraphs detail the results of the normaliza-
tion procedure for each grammar. Presented first is Brainfuck,
with its full grammar displayed before and after normalization.
Next, select portions from the normalized XML grammar
are detailed. Finally, partial results of transforming Java™’s
grammar are shown.

Fig. 3 and Fig. 4 show Brainfuck’s grammar before and after
normalization. As depicted, the normalized grammar meets all
the conditions required for the normal form. The normalization
procedure recognized that the allowed syntax inside square
brackets is the same as that of the entire file. Also, note that
the normalization replaced both ∗ expressions. Finally, all of
the unit rules for the operators have been replaced directly
with their text.

The exact results of XML’s normalization are not shown
because of their length. Rather, Table II shows the net increase
in the number of productions. This change occurs because
productions in the original grammar are split apart into simpler
productions, and each use of the ∗ ANTLR feature introduced
two rules.

TABLE II
THE NUMBER OF PRODUCTIONS IN EACH GRAMMAR BEFORE AND AFTER

NORMALIZATION.

Language Before After

Brainfuck 12 4
XML 32 52
Java™ 222 372

As follows is an example portion of the XML grammar
before and after normalization. The production representing
XML elements in the pre-normalized grammar is:

〈element〉 → < . . . > . . . </ . . . > | < . . . />

As can be seen, there are two different variants. The first
variant represents XML elements with a closing and opening
tag. The second variant represents XML elements with a single
self-closing tag. In the normalized grammar, each of these two
variants were extracted into their own rules:

〈element〉 → 〈A〉 | 〈B〉
〈A〉 → < . . . > . . . </ . . . >
〈B〉 → < . . . />

Like the XML grammar, Java™’s grammar experienced a
significant size increase from the normalization procedure.
Part of the reason is that the input Java™ grammar had a
significant number of optional expressions: expressions using
?. Each of these were eventually extracted out to a new
production, resulting in a large number of productions of the
form 〈A〉 → A | ε.

An example of de-duplication involved the production defin-
ing a Java™ expression. In this example, the following three
rules were combined:

〈parExpression〉 → (〈expression〉)
〈expression〉 → 〈primary〉 | . . .
〈primary〉 → (〈expression〉) | . . .

Note that the first part of 〈primary〉’s rule is the same
as 〈parExpression〉’s rule. In the normalization process, this
was detected, and the equivalent portion was replaced with
the 〈parExpression〉 symbol. Finally, 〈primary〉’s rule was
substituted directly into 〈expression〉 and eliminated. This
substitution arose because of the constraint that a production
cannot reference another production that has the same form.
This replacement results in the following:

〈parExpression〉 → (〈expression〉)
〈expression〉 → 〈parExpression〉 | . . . | . . .

Other substitutions resulted in a small number of produc-
tions in the normalized grammar being extremely long. In-
triguingly, these large productions were mostly Form2. Those
of Form1 involved either Java™’s try-catch feature or generic
method declaration.

Similar to the results of normalizing Brainfuck, a large
number of symbols that produced a single token were replaced
with that token in Java™’s normalized form. Like as in the
XML grammar, expressions involving ∗ were replaced with

productions. However, these expressions happened less often
than in XML, making them far less noticeable.

Our results show that the normalization process functions
as designed. Each of the normalized grammars meets the
conditions of the normalization. There was a decrease in
the number of productions for Brainfuck’s grammar and an
increase for the XML and Java™ grammars, as shown in
Table II. The increase in the last two grammars was not
unreasonable. This increase is attributable to the conversion
of the following two specific ANTLR features into equivalent
BNF features: (i) the optional qualifier ? and (ii) the zero or
more qualifier ∗.

VI. THREATS TO VALIDITY

In this work, we focused on threats to the conclusion,
construct, internal, and external validity, as detailed by Wohlin
et al. [25]. There is a severe threat to the conclusion validity
of this study, as this was a study conducted on only three
grammars. Additionally, there are two threats to the internal
validity of the study. First, the selected grammars are not
necessarily representative of the population of grammars.
Second, there is no notion of causal influence that can be
inferred by the study. There is also a threat to the construct
validity of this study, in that we examined only a single method
(given that multiple methods for this particular problem do not
exist). Finally, threats to external validity are present due to the
lack of support in the process for grammars used in practice.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed an automatic approach to
normalizing grammars. This approach reduces the effort re-
quired to merge grammars automatically. We demonstrated and
evaluated this approach via a pilot study on three grammars:
Brainfuck, XML, and Java™. The pilot study presents a step
towards the automated construction of multilingual Island
Grammar-based parsers, thereby easing the construction of
multilingual code analysis tools.

There is a significant amount of future work to be done.
This normalization procedure was designed around grammars
written in BNF. However, typical applications will likely use
grammars written in more complicated forms. Further refine-
ment of the normalization procedure using these features is one
such avenue. Currently, our meta-model represents grammars
written in BNF, EBNF, and ANTLR. We intend to extend
this meta-model to allow representing TXL [12] and SDF
[11] grammars. Additionally, this process is currently being
integrated as part of an overarching approach to automate the
development of multilingual parsers through the automated
construction of Island Grammars based on existing grammars.
Finally, we intend to present the theoretical underpinnings
of the presented algorithm in the context of context-free
grammars.

REFERENCES

[1] Z. Mushtaq, G. Rasool, and B. Shehzad, “Multilingual Source Code
Analysis: A Systematic Literature Review,” IEEE Access, vol. 5, pp.
11 307–11 336, 2017.

[2] A. Janes, D. Piatov, A. Sillitti, and G. Succi, “How to Calculate Software
Metrics for Multiple Languages Using Open Source Parsers,” in Open
Source Software: Quality Verification, E. Petrinja, G. Succi, N. El Ioini,
and A. Sillitti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, vol. 404, pp. 264–270.

[3] N. Synytskyy, J. R. Cordy, and T. R. Dean, “Robust multilingual parsing
using island grammars,” in Proceedings of the 2003 Conference of the
Centre for Advanced Studies on Collaborative Research. IBM Press,
2003, pp. 266–278.

[4] M. Haoxiang, Languages and Machines: An Introduction to the Theory
of Computer Science, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co. Inc., 1988.

[5] J. W. Backus, “The syntax and semantics of the proposed international
algebraic language of the zurich acm-gamm conference,” Proceedings
of the International Comference on Information Processing, 1959, 1959.

[6] V. Zaytsev, “Bnf was here: What have we done about the
unnecessary diversity of notation for syntactic definitions,” in
Proceedings of the 27th Annual ACM Symposium on Applied
Computing, ser. SAC ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 1910–1915. [Online]. Available:
https://doi.org/10.1145/2245276.2232090

[7] E. B. ISO, “Iso/iec 14977: 1996 (e),” ISO: Geneva, 1996.
[8] T. Parr, The Definitive ANTLR 4 Reference, ser. The Pragmatic Pro-

grammers. Dallas, Texas: The Pragmatic Bookshelf, 2012, oCLC:
ocn802295434.

[9] S. C. Johnson et al., Yacc: Yet another compiler-compiler. Bell
Laboratories Murray Hill, NJ, 1975, vol. 32.

[10] R. P. Corbett, “Static semantics and compiler error recovery,” Ph.D.
dissertation, California Univ Berkeley Dept of Electrical Engineering
and Computer Sciences, 1985.

[11] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers, “The syntax def-
inition formalism SDF—reference manual—,” ACM SIGPLAN Notices,
vol. 24, no. 11, pp. 43–75, Nov. 1989.

[12] T. Dean, J. Cordy, A. Malton, and K. Schneider, “Grammar program-
ming in TXL,” in Proceedings. Second IEEE International Workshop
on Source Code Analysis and Manipulation. Montreal, Que., Canada:
IEEE Comput. Soc, 2002, pp. 93–102.

[13] R. Lämmel and V. Zaytsev, “An introduction to grammar convergence,”
in Integrated Formal Methods, M. Leuschel and H. Wehrheim, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 246–260.

[14] A. V. Deursen and T. Kuipers, “Building documentation generators,” in
Proceedings IEEE International Conference on Software Maintenance
- 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No.99CB36360), Aug. 1999, pp. 40–49.

[15] M. Sipser, Introduction to the Theory of Computation. Cengage
learning, 2012.

[16] N. Chomsky, “On certain formal properties of grammars,” Information
and Control, vol. 2, no. 2, pp. 137 – 167, 1959. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0019995859903626

[17] U. Müller, “Brainfuck–an eight-instruction turing-complete program-
ming language,” Available at the Internet address http://en. wikipedia.
org/wiki/Brainfuck, 1993.

[18] E. Cerami, Web Services Essentials: Distributed Applications with XML-
RPC, SOAP, UDDI & WSDL. " O’Reilly Media, Inc.", 2002.

[19] C. Jacquemot, L. Latil, and V. Abrossimov, “Preparation of a software
configuration using an XML type programming language,” US Patent
US20 040 003 388A1, Jan., 2004.

[20] B. Kurniawan, Java for the Web with Servlets, JSP, and EJB. Sams
Publishing, 2002.

[21] A. Annamaa, A. Breslav, J. Kabanov, and V. Vene, “An interactive
tool for analyzing embedded SQL queries,” in Asian Symposium on
Programming Languages and Systems. Springer, 2010, pp. 131–138.

[22] V. S. Getov, “A mixed-language programming methodology for high
performance Java computing,” in The Architecture of Scientific Software.
Springer, 2001, pp. 333–347.

[23] “Stack Overflow Developer Survey 2019,”
https://insights.stackoverflow.com/survey/2019/, 2019.

[24] J. F. Power and B. A. Malloy, “A metrics suite for grammar-based
software,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 16, no. 6, pp. 405–426, Nov. 2004.

[25] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012.

